
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Generic Neural Locomotion Control Framework for
Legged Robots

Mathias Thor, Tomas Kulvicius, and Poramate Manoonpong

Abstract—In this paper, we present a generic locomotion
control framework for legged robots and a strategy for control
policy optimization. The framework is based on neural control
and black-box optimization. The neural control combines a
central pattern generator (CPG) and a radial basis function
(RBF) network to create a CPG-RBF network. The control
network acts as a neural basis to produce arbitrary rhythmic
trajectories for the joints of robots. The main features of the
CPG-RBF network are: 1) it is generic, since it can be applied
to legged robots with different morphologies; 2) it has few control
parameters, resulting in fast learning; 3) it is scalable, both in
terms of policy/trajectory complexity and the number of legs
that can be controlled using similar trajectories; 4) it does not
rely heavily on sensory feedback to generate locomotion and
is thus less prone to sensory faults; and 5) once trained, it is
simple, minimal, and intuitive to use and analyze. These features
will lead to an easy-to-use framework with fast convergence
and the ability to encode complex locomotion control policies.
In this work, we show that the framework can successfully be
applied to three different simulated legged robots with varying
morphologies, and even broken joints, to learn locomotion control
policies. We also show that after learning, the control policies can
also be successfully transferred to a real-world robot without
any modifications. We, furthermore, show the scalability of the
framework by implementing it as a central controller for all
legs of a robot and as a decentralized controller for individual
legs and leg pairs. By investigating the correlation between robot
morphology and encoding type, we are able to present a strategy
for control policy optimization. Finally, we show how sensory
feedback can be integrated into the CPG-RBF network to enable
online adaptation.

Index Terms—Legged robots, Neurorobotics, Generic control,

Manuscript received July 29, 2018; revised August 26, 2019. The work was
supported in part by the Horizon 2020 Framework Programme (FETPROACT-
01-2016 FET Proactive: emerging themes and communities) under Grant
732266 (Plan4Act) [P.M., Project WP-PI], the NSFC-DFG Collaborative
Research Program of the National Natural Science of Foundation of China
(grant no. 51861135306, P.M., project co-PI), and a startup grant on Bio-
inspired Robotics from VISTEC [P.M., Project PI].

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. This includes 10 multime-
dia MP4 format video clips, which show different robots using the proposed
framework, and supplementary material in which we demonstrate how sensory
feedback can be integrated into the CPG-RBF network. This material is 91.5
MB in size.

M. Thor is with the Embodied Artificial Intelligence and Neurorobotics
Laboratory, SDU-Biorobotics section, The Mærsk Mc-Kinney Møller Insti-
tute, The University of Southern Denmark, Odense 5230, Denmark (e-mail:
mathias@mmmi.sdu.dk).

T. Kulvicius is with the Department of Computational Neuroscience,
University of Göettingen, Göettingen, 37077, Germany.

P. Manoonpong is with the College of Mechanical and Electrical Engineer-
ing, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,
China, and with the Embodied Artificial Intelligence and Neurorobotics
Laboratory, SDU-Biorobotics section, The Mærsk Mc-Kinney Møller Institute,
The University of Southern Denmark, Odense 5230, Denmark, and with the
School of Information Science & Technology, Vidyasirimedhi Institute of
Science & Technology, Rayong 21210, Thailand (e-mail: poma@nuaa.edu.cn).

Fig. 1. CPG-RBF network, combining a CPG with an RBF network. The
policy is encoded in the synaptic weights, wpj,k , connecting the RBF neurons,
Rh, to the motor neurons, Mj . These weights are optimized using black-box
optimization (BBO) as indicated by the dashed arrow. The weights w0,0,
w0,1, w1,0, and w1,1 of the CPG are fixed such that its outputs oscillate at a
certain frequency (i.e., here approximately 0.3 Hz (low walking frequency)).

Locomotion control, Learning, Policy optimization

I. INTRODUCTION

DESIGNING locomotion controllers is challenging due
to the varying morphology of different robots. While

one type of legged robot requires a particular set of joint
trajectories, another might need something different. The fact
that legged robots often have many degrees of freedom, and
that manual tuning of parameters in order to achieve good
performance is difficult, calls for an automated approach.
Good locomotion performance can be determined by: 1) fast
straight walking (i.e., distance traveled or speed); 2) less body
oscillation (i.e., stability); 3) less slip during a stance phase
(i.e., slippage); and 4) no collision between legs. By using
machine learning, it is possible to let the legged robot learn
trajectories from interacting with the environment. Optimiza-
tion is typically done in simulation since the robot needs many
interactions with the environment, depending on the learning
algorithm and controller complexity [1], [2], [3], [4].

Many of today’s locomotion controllers are problematic
since they either rely on imitation learning for simple control
without optimization [5], [6] or learning where the neural
control is either too simple [2], [1] or too complex [3], [4]. A
controller that is too simple does not allow for complex loco-
motion control policies to be learned, while a controller that



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

is too complex and relies on large complex neural networks
suffers from slow learning (see Section II for more details).
Complex controllers also make it hard to analyze the learned
locomotion control policy and extend the framework with
additional behaviors. Finally, most controllers rely heavily
on sensory feedback which introduces a possible breaking
point in cases of sensory fault. Sensory feedback is important
for controlling legged robots and essential for adapting to
difficult terrain, where legged robots are especially useful.
However, when the sensory feedback is tightly integrated into
a controller, it is difficult and in some cases, impossible to
deal with sensory failures.

To overcome these problems, we need a control framework
that is simple and yet able to encode complex locomotion
control policies. A simple control framework implies that it is
easy to analyze and has few policy parameters, resulting in fast
learning. One area where fast learning is especially important
is research concerning optimization directly in the real world
[7], [8]. Finally, the framework also needs to be generic and
scalable to support robots with different morphologies and
the integration of additional behaviors. A modular setup will
make the framework less prone to sensory faults since behavior
modules can be added and removed online.

For these reasons, we present a comprehensible, generic,
and flexible/scalable neural locomotion control framework
with different control encodings and control policy optimiza-
tion for locomotion generation of legged robots with different
morphologies. The framework, which is the main contribu-
tion of this work, is based on neural control and black-box
optimization (BBO). The neural control called the CPG-RBF
network (acting as a neural basis) combines a central pattern
generator (CPG) with a radial basis function (RBF) network
(see Fig. 1). CPGs are one of the most popular methods for
locomotion generation in legged robots (for reviews see [9],
[10]). They are, however, unable to take full advantage of the
robot’s morphology since the rhythmic CPG output by default
is wave-shaped and cannot be easily reshaped using the CPG
alone [9]. To overcome this, we use the RBF network, which
is often used for function approximation and can, therefore, be
set up to reshape the CPG output. The RBF network can either
amplify or reduce a specific part of the CPG signal. Thus,
it is possible to train and produce arbitrary shaped rhythmic
trajectories for the joints of a legged robot. The trajectories are
encoded in the synaptic weights connecting the RBF network
to the motor outputs (blue and red connections in Fig. 1).
Possessing only one hidden layer, RBF networks have a faster
convergence rate in comparison to multi-layer perceptrons like
those presented in [3], [4]. Moreover, interpreting the function-
ality of each neuron in the hidden layer is straightforward.
This is because each neuron’s activation encodes the joint
position at a particular phase in the stepping cycle. Thus, the
simplicity of the CPG-RBF network makes it easy to overview
and analyze. One way to analyze the network is by visualizing
the trajectories using only the network weights, which may be
useful when comparing to biology. Furthermore, the simplicity
makes the network scalable and expandable with additional
behavior modules.

The CPG-RBF network was presented for the first time in

[11], where the basics of the neural controller were explained.
In this work, we significantly elaborate on the previous study
and demonstrate that the framework can also be applied to
three robots with different morphologies. We also elaborate
on the scalability of the framework, since not only can it be
implemented as a central controller for all legs of a robot, but
also in a decentralized way to control individual legs or leg
pairs (i.e., front, hind, and middle legs). Through experiments,
we aim to investigate how various control strategies relate to
different legged robot morphologies. In this way, we propose
a strategy for control policy optimization. More specifically,
we investigate three different control strategies or controller
encodings: indirect encoding where all legs of the robot
are controlled by the same CPG-RBF network, semi-indirect
encoding where all leg pairs are controlled with the same CPG-
RBF networks, and direct encoding where each leg has its own
CPG-RBF network.

The main objective of this work is to explore the use of
BBO to quickly tune CPG-RBF networks that can generate
feedforward joint trajectories for robots with different mor-
phologies. In other words, to provide motor primitives as a
basis for robot locomotion. However, to also show that the
CPG-RBF network is extendable with sensory feedback, we
present a preliminary study in the supplementary material
where sensory feedback from an inertial measurement unit is
integrated into the network. This integration enables the robot
to adapt its body posture online. In the discussion (Section
VIII), we consider other modular extensions of the framework,
such as extending it with different sensor-driven behaviors for
leg movement adaptation to navigate on uneven, unpredictable
terrain (e.g., terrain with holes and obstacles). Such extensions
are possible due to the scalability, modularity, and simplicity
of the CPG-RBF network.

In summary, the main features of the CPG-RBF network
are: it is simple, minimal, and intuitive to use and analyze;
it has few control parameters, resulting in fast learning; it
is scalable both in terms of policy/trajectory complexity,
controller encoding, and extendable; finally, it is generic since
it can be applied to legged robots with different morphologies.
In this work, we: 1) demonstrate that the CPG-RBF network
can be applied to locomotion generation for legged robots with
different morphologies; 2) analyze how the controller encoding
of the CPG-RBF network is related to the morphology of the
legged system; 3) show that the learned controller network
can be deployed directly to a real-world robot and used
for damage compensation; 4) show that it is possible to
integrate sensory feedback into the CPG-RBF network; and
5) discuss the framework potential in terms of real-world
learning, encoding switching, policies for different behaviors,
and extension with different sensory feedback. To this end, the
proposed framework can learn to drive three different legged
robots for fast locomotion, including one with broken joints.

II. RELATED WORK

In [2], Oliveira et al. described an approach used to evolve
a locomotion controller for a simple quadruped robot. The
controller is based on CPGs such that it has seven free



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

parameters for describing the CPG amplitude and offset of
the front and hind legs as well as the overall swing frequency.
These parameters are learned using a genetic algorithm (GA)
to find the optimal combination for minimizing body vibration
while maximizing the velocity and stability margin. The GA
is a population-based algorithm that uses a technique inspired
by evolution, such as inheritance, mutation, selection, and
crossover [12]. The presented optimization of quadruped robot
locomotion is promising and straightforward. However, the
parameter space is narrow and does not allow for complex
control policies and the aforementioned good locomotion
performance. This is mainly because it is not possible to
optimize the shape of the CPG output signal; only its uniform
amplitude and offset. Finally, the authors only demonstrate
their approach on one single quadruped robot with eight joints
(i.e., two joints per leg) and in a simulated environment.

In [5], Nakanishi et al. introduced a locomotion controller
for biped locomotion using dynamic movement primitives
(DMPs) as a CPG. In their approach, they allow rhythmic
DMPs to learn demonstrated human trajectories using locally
weighted regression. Moreover, they propose an adaptation
algorithm for the walking frequency, based on phase reset-
ting and entrainment, to make the controller more robust
against external perturbations and environmental changes. The
algorithm uses foot contact information to update the CPG
frequency and phase resetting. The results show that the DMPs
can learn the demonstrated trajectories, which could be seen
as prior knowledge and a basis for further improvement using
reinforcement learning (RL). However, this was not explored
and the trajectories are thus only as good as the ones provided
by the human demonstrator. Furthermore, the controller was
only demonstrated on a single robot.

In [6], Rosado et al. also presented a biped locomotion
controller using rhythmic DMPs learned in task space, from
a single demonstration. They use three DMPs for each leg,
representing the x, y, and z dimensions, respectively. Their
work is related to [5], but instead of exploring phase resetting
to generate adaptive walking, they adapt the parameters of
DMPs related to task variables. These parameters include
amplitude, frequency, and offset, which directly relate to step
length, hip height, foot clearance, and forward velocity. As in
[5], they did not further improve the trajectory of the DMPs
after learning the demonstrated trajectory and the controller
was only used on a single robot.

Recently, Hwangbo et al. [3] described a novel method
for training a neural network policy in simulation and sub-
sequently transferring it to the legged quadruped robot called
ANYmal. They achieve high efficiency and realism in sim-
ulation by combining classical models representing well-
known parts of the robot with learning methods that can
handle complex dynamics which are often hard to model
(e.g., actuator dynamics, control signal delays, and low-level
controller dynamics). They learn these mappings in an end-to-
end manner using self-supervised learning with a deep neural
network. With the learned dynamics, they train controllers
using an RL-based optimization method and subsequently
deploy them directly in the physical robot. The controller
implementing the locomotion control policy is a four-layer

neural network (one input layer, two hidden layers, and one
output layer) with multiple inputs (e.g., robot states, joint
states, and command history). The two hidden layers consist of
256 and 128 neurons, respectively. Finally, 12 output neurons
(outputting joint positions) drive the 12 joints of ANYmal.
Their novel approach to dealing with the reality gap and
training networks for locomotion generation is very promising.
The positive results in terms of locomotion performance show
that the study, without doubt, makes a significant contri-
bution to the field of data-driven methods for locomotion
control. However, the learned controller network is hard to
comprehend, consisting of millions of weights which have
to be learned by the RL-based method. The complexity of
the neural networks makes it hard to identify how and why
the controller uses different sensors, and if they are even
needed for basic locomotion generation. The fact that it relies
heavily on sensory feedback and command history as inputs
also makes it prone to sensory fault, since in this case, the
controller may not function properly. Furthermore, hundreds of
millions of samples are needed to train the network, resulting
in long training sessions; nine days of simulated time for
locomotion control policy and 79 days of simulated time for
the recovery from fall control policy. Simulated time is the
time used by the robot inside the simulated environment and
therefore independent of the CPU. Thus, when applying the
proposed locomotion controller one also needs to either use
their learned dynamics or learn new ones themselves since
other available simulation frameworks, such as Gazebo [13]
and V-REP [14] (used by many robotics communities) are too
slow.

In [4], Clune et al. presented a similar controller network as
[3] for a simulated quadruped robot. This smaller network has
three layers with 20 neurons per layer and also relies heavily
on sensory feedback. Based on sensory feedback, the network
generates new positions for the 12 joints of the quadruped
robot. The network thus suffers from the same drawbacks as
in [3]. However, the main contribution of their work is the
investigation of different controller encodings and how those
relate to the regularity of the system. In their work, they used
HyperNEAT (NeuroEvolution of Augmenting Topologies) as
indirect encoding and FT-NEAT for direct encoding (for a
detailed explanation see [4]). The authors found that the
performance of indirect encoding improves with the regularity
of the problem but also that the bias of indirect encoding
toward regularity hurt its performance on problems containing
some irregularity (where direct encoding performs the best).
Additionally, their findings indicate that it is advantageous to
shift from indirect to direct encoding during training (when
training with indirect encoding converges) because, in this
way, it is possible to make subtle adjustments to regular
patterns to account for problem irregularities [4]. With regard
to legged robots, the authors modulated the regularity of the
quadruped robot by changing the number of faulty joints (i.e.,
constant uniform noise is added to the position commands
of the faulty joints). Thus, the results are limited regarding
generic locomotion control, since it is only carried out for one
single robot without any changes to the morphology. In this
study, we investigate how the controller encoding relates to



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

the morphology regularity of different robots.

III. CPG-RBF NETWORK

In this section, we explain the CPG-RBF network and
its different components, starting with the CPG. The CPG-
RBF network is inspired by rhythmic DMPs [15], [16] and
therefore, at the end of this section, we compare the two.

A. Central Pattern Generator (CPG)

A CPG is a group of interconnected neurons located at
the spinal cord of vertebrates and in the thoracic ganglia of
invertebrates. The term central means that a CPG can be
activated to generate a motor pattern without the requirement
of sensory feedback. CPGs play a central role in elucidating
locomotion mechanisms and other rhythmic movements such
as breathing [17], [18]. Different CPG models with varying
complexity have been proposed: conceptual biological models
[19], detailed biophysical models [20], connectionist models
[21], and abstract models [9], [10]. In the domain of robot
control, most previous research has employed abstract CPG
models using coupled oscillators to generate basic periodic
movement patterns [22]. From the control perspective, CPGs
have various interesting properties such as robustness against
perturbations, easy and smooth modulation of the frequency,
suitability for distributed implementation, and the fact that
they use few control parameters. Concerning the latter, we
especially explore the distributed implementation properties
of different controller encodings, as explained in Section IV.

For the CPG-RBF network, we use the abstract neural
SO(2)-oscillator based CPG model [23] (see CPG in Fig. 1).
The SO(2)-based CPG is a versatile recurrent neural network
consisting of two fully-connected standard additive discrete-
time neurons N0 and N1, both using a sigmoid transfer
function. The SO(2) oscillator can exhibit various dynamical
behaviors (e.g., periodic patterns with different frequencies,
chaotic patterns, and hysteresis effects [24], [25], [26]) by
changing its synaptic weights through manual control or sen-
sory feedback. These dynamical network behaviors can sub-
sequently be exploited for complex locomotion (e.g., chaotic
leg movement for self-untrapping of a leg from a hole in the
ground [27], walking at different frequencies [28]).

The outputs of the two neurons in the SO(2) oscillator are
given by

oi(t+ 1) = tanh

 N∑
j=0

wij(t)oj(t)

 , (1)

where oi is the output from neuron i, N is the number of
neurons, and wij is the synaptic weight from neuron i to j.
The two neurons produce rhythmic outputs with a phase shift
of π/2.

As proven by Pasemann et al. [23], the network produces a
quasi-periodic output when the weights are chosen as(

w00(t) w01(t)
w10(t) w11(t)

)
= α ·

(
cos ϕ(t) sinϕ(t)
− sin ϕ(t) cosϕ(t)

)
, (2)

with 0 < ϕ(t) < π as the frequency-determining parameter.
Parameter α determines the amplitude and the nonlinearity of

Fig. 2. Harmonic CPG outputs oscillating at a frequency of ≈ 0.30 Hz. o0
is the output from neuron N0 while o1 is the output from neuron N1.

the output oscillations. For the CPG-RBF network, α = 1.01
and ϕ = 0.01π are used to obtain harmonic oscillation at a
fixed frequency of ≈ 0.30 Hz. The two outputs from the CPG
can be seen in Fig. 2. Note that the frequency can also be
learned [22], [29], but for the purpose of this study, it remain
fixed.

B. Radial Basis Function Network (RBF network)

An RBF network is an artificial neural network that uses
radial basis activation functions [30]. An RBF network consists
of only three layers; an input layer which in our case is the
CPG, a hidden layer, and an output layer which in our case
consists of the motor neurons (see Fig. 1). The activation
functions of the neurons in the hidden layer are radial basis
functions; more specifically, two-dimensional Gaussian func-
tions. The transfer function of the hidden neuron is thus given
as

Rh = e
−
(

(o0−µh,0)2+(o1−µh,1)2

σ2
RBF

)
, (3)

where, µh,0 and µh,1 are two means of RBF neuron Rh,
σ2
RBF is the common variance for the two means, and Rh

is the response of the RBF neuron when receiving input o0
and o1 from the CPG. The two means are set manually so that
the RBF neurons or kernels are equally distributed along one
period of the CPG output signals. This is achieved by

µh,n = on

(
(h− 1) · T
H − 1

)
, (4)

where n is an index for the CPG output, T is the period of the
CPG signal (T ≈ 1/0.30Hz), and H is the total number of
RBF neurons. The advantage of equally distributing the means
along one period of the CPG output signal is that in doing so
it is possible to modify discrete parts of the CPG signal shape,
and the centers of the kernels do not need to be learned. For
example, when using H = 20, it is possible to make the jth

joint move either more or less at the center of its trajectory
by altering the synaptic weight wp10,j from the tenth RBF
neuron R10 to motor neuron Mj .

The number of RBF neurons, H , directly relates to the
complexity of the output trajectory. While a high number
of neurons enables complex trajectories that can approxi-
mate almost any functions, a small number of neurons can
only produce simple trajectories. However, a small number



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

of neurons also means fewer policy parameters and thus a
faster convergence rate. While the number of neurons con-
trols the complexity of the output trajectory, their variance,
σ2
RBF , controls its smoothness. A high variance results in a

very smooth trajectory, while a smaller allows a more high-
frequency output trajectory. This creates a trade-off, and in
the case of locomotion control, H = 20 and σ2

RBF = 0.04
are chosen, allowing the learning of smooth complex control
policies at acceptable convergence rates. From empirical study,
we found that a smaller σ2

RBF resulted in jerky movements
while a higher one resulted in too simple trajectories and low
returns (the learned shapes were periodic patterns with almost
symmetrical ascending and descending slopes). For H, we
found that a smaller number of RBF neurons cannot generate
complex trajectories (e.g., periodic patterns with asymmetrical
ascending and descending slopes and different speeds as
shown in Fig. 8) as well as obtaining high returns. In contrast,
a higher number of kernels only increases the convergence rate
and not the return. Thus, H = 20 and σ2

RBF = 0.04 are used
in the experiments presented in Section VI.

C. Dynamic Movement Primitive (DMP)

When comparing the CPG-RBF network to rhythmic DMPs
[15], [16], it is clear that the two are very similar. They
both inhibit a timing system (i.e., the CPG for the CPG-RBF
network and the canonical system for the DMP), and a shaping
system (i.e., the RBF network for the CPG-RBF network and
the forcing function for the DMP). However, the CPG-RBF
network allows us to use only neurons as well as simply
extending it with an online frequency adaptation mechanism
[31], [18], [29]. Furthermore, by using a neural-based CPG,
it is possible to explore the neurodynamics (chaotic patterns
and hysteresis effects) of the CPG by modulating the synaptic
weights [24], [25], [26].

IV. CONTROLLER ENCODING

Clune et al. [4] presented for the first time, a comprehensive
study on controller encodings, demonstrating that phenotype
regularity enables indirect encoding to outperform direct en-
coding as the regularity of the problem increases (as also
described in Section I). In the case of legged robots, the
regularity often boils down to their morphology, i.e., the
level of symmetry. However, other factors, such as motor
imprecision, may also cause irregularity.

In [4], the authors investigated direct and indirect encodings
using HyperNEAT and FT-NEAT, respectively (for a detailed
explanation see [4]). NEAT is a method for evolving artificial
neural networks using a genetic algorithm in a manner inspired
by nature. NEAT utilizes the idea that it is effective to
start evolution with small, simple networks, allowing them to
increase in complexity over generations.

In this work, controller encoding is not provided by the
type of learning algorithm but rather by the implementation
of the neural controller. This is possible because the proposed
framework is scalable, and not only can it be implemented as a
central controller for all legs of a robot, but also decentralized
to control individual legs or leg pairs (i.e., front, hind, and

middle legs). We call it indirect encoding when the CPG-
RBF network acts as a central controller where the same joint
trajectories are learned for all legs (see Fig. 3a). Direct encod-
ing is when the CPG-RBF network is fully decentralized, and
different joint trajectories are learned for each leg, enabling
them to move differently from each other (see Fig. 3c). Finally,
semi-indirect encoding bridges the gap between indirect and
direct, where the CPG-RBF network is partly decentralized,
and only the joint trajectories for the different leg pairs are
learned (see Fig. 3b). The idea behind semi-indirect encoding
is to exploit the bilateral symmetry of legged robots. Note that,
as the controller decentralizes further, more complex control
policies can be learned due to the increased number of unique
trajectories. However, this is at the cost of additional control
policy parameters and thus, slower learning.

V. LEARNING POLICIES WITH PIBB

In this study, we focus on providing a generic locomotion
control framework rather than comparing different optimiza-
tion approaches. Therefore, we employ the state-of-the-art
learning mechanism PIBB [32], which is a probability-based
BBO approach. It follows a direct policy search in order
to improve the policy parameters with respect to a reward
function. PIBB is a BBO variant of the RL-based method
called “Policy Improvement with Path Integrals” (PI2) [33]
with constant exploration and without temporal averaging.
In particular, it can be seen as a special case of covariance
matrix adaptation evolution strategy (CMA-ES) [34] without
covariance matrix updating. The modifications introduced in
PIBB result in a simpler algorithm providing both better
convergence speed and final return (accumulated rewards)
when compared to PI2. Furthermore, PIBB is robust with no
matrix inversions and can be used in model-free learning with
easy-to-construct reward function requirements [35]. PIBB

has no open parameters except for exploration noise [32], and
is faster than gradient-based RL approaches by one order of
magnitude [33].
PIBB was selected not only for its simplicity but also

because PI2 has been successfully used in other continuous,
high-dimensional action spaces [33], [35], [32]. In particular,
it has especially demonstrated impressive results when using
DMPs as the underlying parameterized control policy. Since
PI2 is similar to PIBB [32] and the CPG-RBF network is
comparable to DMPs, PIBB is appropriate for the task at
hand.

The pseudocode for PIBB can be seen in Algorithm 1,
which also illustrates its simplicity. Here, it can be seen
that the mechanism executes K roll-outs, all with different
Gaussian noise, εk, added to the control policy parameters,
wpk,j . The results from the K roll-outs are K returns, Rk,
describing how well the policy, with added exploration noise,
performed according to a certain reward function. Finally, the
probability for each roll-out is calculated and used in cost-
weighted averaging to update the policy parameters.

In the case of the CPG-RBF network, the control policy
parameters wpk,j are given as the synaptic weights from the
RBF neurons to the motor neurons (see wpk,j in Fig. 1).



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

(a) Indirect encoding (b) Semi-indirect encoding (c) Direct encoding

Fig. 3. Examples of the three types of controller encoding on a hexapod robot with three joints (colored circles) in each leg. Each color indicates a different
trajectory or set of CPG-RBF network weights. The dashed lines in the center of the robot indicate symmetry. For example, a vertical line means that the
controller is using the same joint trajectories for the left and right legs while the crossed lines mean that all legs are using the same trajectories.

Algorithm 1 PIBB

while cost not converged do
// Execute K roll-outs
for each k ∈ K do

// Sample in parameter space
εk = N (0, σ2

PIBB )
// Execute policy and record final return (R)
Rk = execCPGRBFN(wpk,j + εk)

end for
// Calculate trajectory cost
for each k ∈ K do

Sk = e
−λ· Rk−mink(Rk)

maxk(Rk)−mink(Rk)

end for
// Calculate probability for each roll-out
for each k ∈ K do

Pk = Sk∑K
k=1 Sk

end for
// Cost-weighted averaging
δwpk,j =

∑K
k=1(Pk·εk)

// Update policy parameters
wpk,j ← wpk,j + δwpk,j
// Decay exploration noise
σ2
PIBB = γ · σ2

PIBB

end while

Noise is given as Gaussian noise with an exploration noise
of σ2

PIBB = 0.015, while K, representing the number of
roll-outs, is set to 8. Both the amount of exploration noise
and number of roll-outs are empirically chosen to promote
fast and stable learning. The exploration noise is further
linearly decayed during learning using a decay constant of
γ = 0.995. This adds an additional free parameter to the
PIBB algorithm. Decaying the exploration noise allows for
large weight changes at the beginning of the learning process
and small changes or fine-tuning toward the end. Finally, we
use the reward function

Rk = w1 · distance− (w2 · instability+(
1− collision

maxdist

)w3

+ w4 · slippage),
(5)

where w1 = 3, w2 = 1, w3 = 20, w4 = 1 and maxdist
is the distance between the legs from where the collision
sub-reward is set to zero (i.e., having no influence). It is a
function of four factors or sub-rewards: distance, instability,
collision, and slippage. Distance is a measure of movement

along the x-axis, and therefore, rewards fast straight walking.
Instability is a measure of how stable the robot is during
movement. It is calculated as the sum of variance in height (z-
axis), absolute mean yaw or heading direction (0◦ is straight),
absolute mean pitch, and absolute mean roll. A pitch and roll
equal to 0◦ means that the robot is parallel with the floor. The
three measurements are summed throughout an entire roll-
out. Instability, therefore, penalizes movement that is not in
the walking direction. Collision is a measure of the extent
to which each leg of the robot collides its other legs. It is
calculated as the exponential inverse distance between the
legs of the robot, thus penalizing legs that are colliding or
very close to each other. Finally, slippage is a measure of the
extent to which each leg of the robot slips on the ground. It is
calculated as foot movement during ground contact versus no
foot movement during ground contact. A slippage return of 1
means that one or more legs are slipping all the time they are
in contact with the ground. Note that different weights (w1 to
w4) are empirically assigned to the four sub-rewards to make
them equal in magnitude and range. Furthermore, instability
and collision are thresholded at 1.5 and 1, respectively. This
is to avoid the negative returns being too large. For (5), the
walking distance can be seen as the dominating reward.

VI. EXPERIMENTS

A. Robot platforms

The legged robot platforms shown in Fig. 4 (Alpha, Laik-
ago, and MORF) were all used to assess the performance
of the generic locomotion control framework. All these were
simulated using a general-purpose robot simulation framework
called V-REP [14]. The simulated environment offers real-
world parameters for a large number of physical properties,
making it realistic and accurate.

1) Alpha: Alpha is a hexapod robot developed at the
University of Southern Denmark (SDU). It is designed to
mimic a dung beetle such that the kinematics and dimensions
match on a scale of 1:22. The morphology of the robot is
irregular, since the front, middle, and hind legs are different
from each other and thus have different ranges of freedom (see
Fig. 5). Each leg consists of three segments and three joints
(J1, J2, and J3). Furthermore, an additional joint is placed
in the back of the robot but remains fixed for simplicity. The
simulated model of the Alpha robot is shown in Fig. 4.

2) Laikago: Laikago is a quadruped robot developed by
Unitree in China [36]. It is designed as a research platform



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Fig. 4. The simulated Alpha, Laikago, and MORF robots. All three robots
are equipped with three joints per leg (J1, J2, and J3).

Fig. 5. The regularity of Laikago, MORF, Alpha, and MORF-D. MORF-D
is MORF when damaged, which in this work means a broken middle leg (as
indicated by the cross). The transparent areas illustrate the range of freedom
for the robots such that the legs are not colliding with the body or other legs.

with four identical legs, each consisting of three joints (J1,
J2, and J3). Its morphology is regular, and all four legs have
similar ranges of freedom (see Fig. 5). The simulated model
of Laikago (provided by Unitree) is shown in Fig. 4.

3) MORF: The Modular Robot Framework (MORF) has
been developed at SDU [37]. It is designed as a modular
research platform for studies on legged locomotion. In this
study, we used MORF in a compact hexapod configuration.
In this configuration, MORF is regular with respect to leg
morphology, since all legs are identical. However, it is irregular
with respect to the position of the legs, i.e., the range of
freedom for the middle leg is different from that of the front
and hind legs which can move further forward or backward
(see Fig. 5). Each leg consists of three joints (J1, J2, and J3).
The simulated model of the MORF robot is shown in Fig. 4.

B. Experimental setup

Four experiments were performed to assess the perfor-
mance of the generic locomotion control framework. In all
experiments, PIBB was used with the same variance of
σ2
PIBB = 0.015 and number of roll-outs K = 8 (as explained

in Section V). In each roll-out, the robots were simulated for
five seconds, i.e., 40 seconds of simulated time in total per
iteration. As mentioned previously, simulated time is the time
used by the robot inside the simulated environment and is
therefore independent of the CPU. From each roll-out, a return
was calculated using the reward function presented in Section
V. The same reward function was used for all legged robots

with no prior knowledge given, except for the initial static
poses shown in Fig. 4 and leg phase relationships (trot gait for
Laikago and tripod for the hexapod robots). Note that while
the leg phase relationship is fixed for indirect encoding, this is
not the case for semi-indirect and direct encoding due to them
being decentralized. The initial CPG-RBF network weights or
policies were randomly initialized using Gaussian noise with
twice the exploration noise of PIBB . A total of 350 iterations
were executed for each robot using direct, indirect, and semi-
indirect encodings. Each experiment were repeated five times
from where the average iteration return and its standard error
was computed.

1) Learning locomotion control policy for forward walking:
In the first experiment, locomotion control policies for the
Laikago, Alpha, and MORF robots were learned in simulation.
The purpose of this experiment was to verify that the CPG-
RBF network is generic and investigate how the controller
encoding relates to the morphology in terms of learning speed
and maximum performance. To show the importance of the
trajectory shape, we further compared the CPG-RBF network
with a CPG without the RBF network (i.e., a fixed wave-
shaped output). Both the amplitude and offset of the CPG were
learned using PIBB as for the CPG-RBF network. Like the
CPG-RBF network, the CPG had no prior knowledge, except
the initial poses shown in Fig. 4 and leg phase relationships
(trot gait for Laikago and tripod for the hexapod robots).
Note that while the CPG-RBF network starts learning from
a static position with no movement, the CPG alone starts
with its standard oscillating output, already enabling it to walk
from iteration 0. The reason for this is that the shape of the
CPG cannot be changed; thus, we start with some reasonable
parameters and optimize those to get the best performance. In
the CPG-RBF network, we start from a static position to avoid
the introduction of a bias in the trajectory shape.

2) Learning locomotion control policy for damage compen-
sation: In the second experiment, locomotion control policies
for MORF with a broken middle leg (MORF-D) were learned
in simulation. The purpose of this experiment is to show that
the CPG-RBF network can also be applied to a damaged
robot and investigate how the controller encoding should be
changed to deal with such highly irregular cases (see MORF-
D in Fig. 5). To see how the CPG-RBF network can make
use of prior knowledge and how fast it is able to adapt after
impairment, we also included an experiment in which the
converged locomotion control policy from learning on the fully
functional version of MORF was used as the starting policy.
Both prior knowledge and the new policy were learned using
semi-indirect encoding.

3) Deploying locomotion control policies on a physical
robot: Finally, to show that the learned locomotion control
policy works not only in simulation but also in the real
world, a test was performed using the physical MORF. During
continuous walking, MORF initially walked with six fully
functional legs using the indirect encoded control policy. After
one meter of walking the middle leg was virtually broken,
setting it into a static position where it could not touch the
ground. To enable MORF to continue walking, the control
policy was swapped to the semi-indirect control policy learned



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

(a) Laikago (b) Alpha

(c) MORF (d) MORF-D

Fig. 6. Mean returns with standard error for learning the weights of the CPG-RBF network and the amplitude and offset of a CPG without the RBF network
when using direct, indirect, and semi-indirect (s-indirect) encodings on (a) Laikago, (b) Alpha, (c) MORF, and (d) MORF-D. In (d), the mean return for
learning the weights of the CPG-RBF network when using semi-indirect encoding and prior knowledge from learning using MORF with fully functioning
legs is also presented. Note that one iteration consists of eight roll-outs, and each roll-out represents five seconds of simulated time. This means that one
iteration takes 40 seconds of simulated time.

for MORF-D. After one meter of walking with a broken
middle leg, it was again enabled, and the initial control policy
swapped back in. The purpose of this experiment was to show
that the policy can be successfully swapped online and the
learned control policies for normal walking and leg damage
work in the real world.

Note that the fourth experiment is placed in the supple-
mentary material. In this experiment, we show that the CPG-
RBF network can integrate sensory feedback from an inertial
measurement unit to learn a body posture behavior that can
stabilize MORF on uneven terrain.

VII. RESULTS

A. Learning locomotion control policy for forward walking

The average return plots from learning the locomotion con-
trol policies of Laikago, Alpha, and MORF are shown in Figs.
6a, 6b, and 6c, respectively. The average sub-returns describing
velocity (calculated from the distance), instability, collision,
and slippage (as explained in (5), Section V) of the converged
locomotion control policies are shown in Fig. 7. The figure
also shows the cost of transport (COT) calculated as P

m·g·v ,
where m is the weight of the entire robot in kg, g is the gravity
of earth (9.82m/s2), v is the walking velocity of the robot in
m/s, and P is the power given as the joint torque in N ·m
times the angular joint velocity in rad/s. It should be noted

that COT is a dimensionless measurement that quantifies the
energy efficiency of transporting the legged robot from start
to finish positions (i.e., the energy efficiency of the generated
locomotion). Video clips of the three robots using the CPG-
RBF network and the three encoding types with weights from
different iterations can be found in the supplementary materials
(videos 1.0, 2.0, and 3.0) or at https://youtu.be/vQ vdE
fAfw (Laikago), https://youtu.be/-XrN7BBBywQ (Alpha), and
https://youtu.be/7JOPKMk97lM (MORF). The learned joint
trajectories for MORF when using semi-indirect encoding are
shown in Fig. 8. The remaining learned joint trajectories using
the three encoding types on all three robots for every iteration
can be found as video clips in the supplementary materials
(videos 1.1, 2.1, and 3.1) or at https://youtu.be/y-ntLATy9OQ
(Laikago), https://youtu.be/UqmXiyjUQ2Y (Alpha), and https:
//youtu.be/RfCQQf6uvkA (MORF).

The results show that our generic framework can be used
to learn walking patterns for robots with different morphology
in a minimum simulated learning time of 13 minutes (MORF
with indirect encoding, Fig. 6c) and a maximum simulated
learning time of 133 minutes (MORF-D with semi-indirect
encoding, Fig. 6d).

The convergence, when using semi-indirect or direct en-
coding is slower in comparison to indirect encoding (see Fig.
6). This is expected, since the number of policy parameters



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Fig. 7. Mean sub-returns and cost of transport (COT) with standard error for the learned policies when using direct, indirect, and semi-indirect (s-indirect)
encodings on Laikago, Alpha, MORF, and MORF-D (five repetitions for each combination of encoding type and robot). Each column of bar plots shows the
sub-returns for forward velocity (calculated from the distance), instability, collision, and slippage, respectively. The velocity is in m/s while the instability,
collision, and slippage are measured as explained in (5). The last column shows the COT; a dimensionless measurement that quantifies the energy efficiency
of transporting the legged robot from start to finish positions.

increases with the number of unique trajectories that need to
be learned. For Laikago, which is the most regular robot of the
three (see Laikago in Fig. 5), the converged policy return when
using semi-indirect or direct encoding is smaller than the one
obtained with indirect encoding (see Fig. 6a). Alpha, the most
irregular robot among the three (see Alpha in Fig. 5), benefits
significantly from semi-indirect encoding as can be seen from
the larger converged policy return (see Fig. 6b). Unlike the two
other robots, Alpha achieves a higher converged policy return
using direct encoding, compared to indirect encoding. Finally,
MORF, which is less regular than Laikago and more regular
than Alpha (see MORF in Fig. 5), also benefits significantly
from semi-indirect encoding (see Fig. 6c). For all three robots,
semi-indirect encoding results in the most energy efficient
locomotion (see COT in Fig. 7).

When comparing the standard error in the average return of
the three robots, it is clear that Laikago has the largest standard
error. The reason for this is that the predefined trot gait and the
morphology of Laikago are not as stable as the tripod gait and
the morphology of MORF and Alpha. This makes it possible
for Laikago to roll over on its back, causing a large negative
return value, which is also indicated in Fig. 7, whereas Laikago
has a relatively high instability for all encodings. The general
standard error is otherwise low, indicating consistent learning,
even though it uses a stochastic learning mechanism. Fig. 7
and the videos of the Laikago and Alpha robots also show
that some foot slippage was still present even though it was
penalized in the reward function.

The results in Fig. 6 also show that when using a CPG
without the RBF network, whereby only the amplitude and
offset are learned, it is not possible for the robots to reach

high performance. This can be observed from the overall low
returns that, only in some cases, are able to compete with
those of the CPG-RBF network. The CPG achieves the highest
returns when used on MORF, but scores close to zero when
used on the other robots. This is because Alpha is too irregular
to obtain good solutions when using CPG alone and the fixed
wave-shaped CPG output makes it hard for Laikago to have a
flat, stable, and slip-free stance phase. In summary, the shape
of the movement trajectory is crucial for the generation of
locomotion patterns, especially for robots with highly irregular
morphologies.

B. Learning locomotion control policy for damage compensa-
tion

The average return plot resulting from learning locomo-
tion control policies on MORF with a broken middle leg
(MORF-D) is shown in Fig. 6d. The video clip of MORF-
D when using the CPG-RBF network and the three encoding
types with weights from different iterations can be found in
the supplementary material (video 4.0) or at https://youtu.
be/1l3hD68Tx88. The video of the learned joint trajectories
using the three encoding types for all iterations can likewise
be found in the supplementary material (video 4.1) or at
https://youtu.be/pk56YJ7NzM0.

The results show that our generic framework can be used
to learn walking patterns for MORF-D. In this configuration,
MORF-D is considered irregular (see Fig. 5). The fixed gait
of indirect encoding resulted in MORF-D almost being unable
to move as can be seen from the low returns. The ability to
change the gait greatly benefits MORF-D, and therefore, both
semi-indirect and direct encoding perform a lot better in terms



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Fig. 8. The learned joint trajectory policies for MORF when using semi-
indirect encoding. The solid lines show the trajectories of the three joints
(J1, J2, and J3) in the front, middle, and hind legs at iteration 350 and
the transparent lines show the intermediate joint trajectories starting from the
first iteration. The remaining learned joint trajectories when using the three
encoding types on all three robots for every iteration can be found as video
clips in the supplementary materials. Note that the figure shows the trajectories
before applying the leg phase relationships (trot gait for Laikago and tripod
for the hexapod robots).

of convergence speed and return. This is also why, when using
the CPG without the RBF network, MORF-D gets returns
close to zero. When using prior knowledge from MORF with
fully functional legs, the convergence rate is much faster and
only takes around 13 minutes of simulated time instead of 133
minutes.

C. Deploying locomotion control policies on a physical robot

In the third experiment, the learned control policy was
deployed on the physical MORF and swapped online for
damage compensation. Snapshots from the experiment can be
seen in Fig. 9 and a video clip is available in the supplementary
material (video 5.0) or at https://youtu.be/OIYxm5DvPOA.

The results show that the learned control policies success-
fully transfer to a physical robot platform without any further
modifications. They also show that the control policy can
be successfully and smoothly swapped online to deal with
damages.

VIII. DISCUSSION AND CONCLUSION

In this paper, we have presented a generic framework for
learning complex locomotion control policies for three differ-
ent legged robots, including one with a damaged leg, using
identical reward functions and no prior knowledge except the
initial static poses and leg phase relationships. The framework
is based on a neural controller called the CPG-RBF network,
consisting of a combination of a CPG and an RBF network
together with the optimization algorithm PIBB for learning
the weights of the CPG-RBF network.

The CPG-RBF network is scalable in terms of complexity
and can be decentralized such that the number of unique
joint trajectories to be learned can be varied. This provides
a foundation for three different types of controller encoding:
indirect where all legs use identical joint trajectories; semi-
indirect where leg pairs (e.g., front, middle, and hind legs)
use identical joint trajectories; and direct where all legs use
unique joint trajectories. The results show that the choice
of encoding relates to the morphology of the legged robot.
Regular robots benefit more from indirect encoding than irreg-
ular robots, which gain greater benefit from semi-indirect and
direct encoding. For example, Laikago, which is very regular,
does not benefit from having different joint trajectories, as can
be observed from the low return of semi-indirect and direct
encoding. On the other hand, Alpha is very irregular, and
therefore, benefits from using semi-indirect encoding. The fact
that it is more irregular than the other two robots is evidenced
by the high return of direct encoding and the relatively slower
convergence of indirect encoding. Finally, MORF, which is
between Laikago and Alpha with respect to regularity, benefits
significantly from semi-indirect encoding. However, MORF is
still relatively regular, which is also one reason why indirect
encoding results in a higher return than direct. This finding is
consistent with that found in [4]. The semi-indirect controllers
achieved the highest return for all robots, except Laikago, at
reasonable convergence rates. We believe this is due to the
bilateral symmetry of legged robots. In terms of convergence
speed, indirect controllers were the fastest while direct were
the slowest. This is due to the number of control parameters
increasing with the number of unique joint trajectories to
learn. Thus, for systems that are not too irregular and where
convergence speed is essential, indirect encoding should be
used. This could, for example, be considered for real-world
optimization [7], [8].

The only prior knowledge given to the robots is the prede-
fined phase relations between the legs (i.e., gait) and the initial
static poses. However, for semi-indirect and direct encodings,
this gait may change during learning. With semi-indirect
encoding, the phase between ipsilateral legs (from front to rear
in forward walking) can change since the same trajectories,
with a predefined phase shift, are learned for contralateral leg
pairs (e.g., front, middle, and hind legs). With direct encoding,
the phase between all legs can change as each leg learns its
own trajectories. The results show that both Alpha and MORF
learned semi-indirect and direct encoded locomotion policies
that minimize the use of the middle legs (see supplemental
videos 2.0 and 3.0). The reason for this is that distance is
dominant in the reward function, and thus the speed of a
trotting gait is preferred over the stability of a tripod gait.

The use of the identical reward function shows that our
approach is not sensitive and, therefore, does not need precise
tuning of the reward weights. However, the locomotion be-
haviors of Laikago and Alpha can be improved by adjusting
the reward functions to better take into account slippage and
stability. This is because Laikago and Alpha can cover long
distances as a result of their long legs (see Fig. 7). Thus,
the stability and slippage penalization terms have less impact
on the total return since they are heavily dominated by the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Fig. 9. Learned locomotion control policy from simulation applied directly to the physical MORF. (a) MORF is fully functional for the first meter of walking.
(b) after one meter of walking the middle leg is virtually broken (as indicated by the white box) and the locomotion control policy is successfully and smoothly
swapped to one that enables it to continue walking. (c) finally, after two meters of walking, the middle leg recovers, and the initial locomotion control policy
is swapped back in.

distance. Another strategy for improving the locomotion for
uneven terrain is shown in the supplementary material. Here
sensory feedback from an inertial measurement unit is inte-
grated into the CPG-RBF network for body posture adaptation
and walking stability enhancement of MORF during walking
on uneven terrain.

We have demonstrated that the proposed framework can
learn complex locomotion control policies with a minimum
simulated learning time of 13 minutes and a maximum sim-
ulated learning time of 133 minutes. The fast convergence is
due to the low number of parameters needed by the CPG-
RBF network. An approach similar to the CPG-RBF network
is presented in [38], where arbitrary rhythmic signals are
generated as a weighted linear combination of several CPGs
with different amplitudes, frequencies, and phase shifts. In
comparison, the CPG-RBF network uses fewer parameters,
which is likewise true when also comparing to [3] and [4].
This means that the CPG-RBF network is able to learn faster
and the network is easier to comprehend. Moreover, the CPG-
RBF network consists of two decoupled components, i.e., it is
more modular with a single CPG controlling the frequency
of the rhythmic signal and the RBF network subsequently
reshaping it. Without the RBF network, the CPG, with its
fixed wave-shaped output, is not able to achieve the same high
returns as the CPG-RBF network. This shows that the shape
of the motion trajectories plays a crucial role in the robot’s
locomotion performance.

The simplicity of the CPG-RBF network makes it easy to
analyze since it is straightforward to interpret the function
of each synaptic weight or policy parameter. Nevertheless, the
CPG-RBF network is still able to produce complex locomotion
patterns, showing that a neural controller does not need to be
large and complex to encode motor primitives for complex
locomotion behaviors. These features can be seen from both

the videos of robots in simulation and the learned joint
trajectories. For example, in the video of Alpha, it can be
seen that by using semi-indirect encoding, a highly complex
gait was learned, where the middle legs delay their movement
in the middle of the swing phase to make room for the front
and hind legs.

The learned controller successfully transfers to a physical,
real-world legged robot without any modification. When used
on the physical robot, the results show that it can walk and
even compensate for damage by swapping the locomotion con-
trol policy online. It thereby displays behaviors similar to those
presented in [1] where an intelligent trial and error algorithm
is used for adapting to robot damage using a pre-computed
behavior-performance map that predicts the performance of
thousands of control policies with different locomotion be-
haviors. The main difference between the frameworks is that
in [1] many locomotion control policies are learned at random
and put into a behavior-performance map for handling many
different types of damage to a legged robot, whereas in our
case, the policy is learned directly for a particular legged robot
with specific damage. Another difference is the complexity of
the control policies. In [1], the control policies are given by a
periodic square signal, parametrized by its amplitude, phase,
and duty cycle (the duty cycle is the proportion of one period
in which the joint is in its higher position). In comparison, it
is clear that the CPG-RBF network can encode more complex
and smooth locomotion control policies since it is not only
parametrized by the amplitude, phase, and duty cycle, but the
entire shape is encoded. Therefore, one possible improvement
to the framework in [1] would be to use the CPG-RBF network
instead of the simple parametrized square signal control.

To summarize, in this work, we demonstrate that: 1) the
proposed framework is simple, minimal, and intuitive to use
and analyze; 2) it has few control parameters, resulting in



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

fast learning – down to 13 minutes of simulated time; 3) the
CPG-RBF network can be applied to locomotion generation
for legged robots with different morphologies; 4) there is a
correlation between controller encoding and the morphology
of the legged system; 5) the learned locomotion policy can
be deployed directly to a real-world robot as well as for
damage compensation; and 6) it is possible to integrate sensory
feedback into the CPG-RBF network. These features lead to a
scalable and easy-to-use framework with fast convergence and
the ability to encode complex locomotion control policies.

The proposed locomotion control framework has the po-
tential to facilitate many exciting future studies. Firstly, since
our framework can learn a control policy for a legged robot
within 13 minutes of simulated time, it would be interesting
to investigate whether it is possible to make the framework
adapt the locomotion control policy online for continuous
autonomous lifelong learning. In this case, one could deal
with damage without the need for a pre-computed map, or
an intelligent trial and error algorithm as in [1]. For example,
by continuously estimating the return from the reward function
(5)1, a sudden decrease in the return could trigger relearning.
Such a decrease could be the result of damage to the robot
(e.g., a broken leg) or a change in walking environment.

In future work, we also plan to thoroughly investigate the
meta parameters of the CPG-RBF network (H and σ2

RBF ) to
see if they are robot and task specific. We will also apply, e.g.,
an information theory approach [41], [42] for meta parameter
learning to speed up the overall learning process such that we
can transfer it to a real robot, allowing it to efficiently learn
and adapt its locomotion behavior online toward continuous
lifelong autonomous learning. An alternative way of increasing
the performance of the CPG-RBF network and rate of con-
vergence is to make use of controller encoding switching like
HybrID (switching from FT-NEAT to HyperNEAT) in [4]. The
approach would begin by learning with indirect encoding and
then switch to semi-indirect encoding once indirect encoding
converges. In this way, the complexity of the control policy
remains the same.

In the supplementary material, we show how the CPG-RBF
network can integrate sensory feedback and become a closed-
loop network that can adapt to the environment. In future work,
we will introduce other types of sensory feedback modules
to further shape the joint trajectories online and improve the
adaptability to uneven and unpredictable terrains. One example
would be to use foot contact force [43] or joint position
feedback [39], [40] to modulate the trajectory in order to stop
lowering a leg if it steps on an obstacle or keep lowering it if
stepping into a hole [44]. By having the sensory feedback as
extensions and employing a sensor fault detection algorithm
like the one presented in [45], it is possible to stop using faulty
sensors, thereby preventing them from affecting the trajectory
of the original CPG-RBF network. Subsequently, it would then

1For continuous learning on the real robot, one can use different sensors
to calculate the reward function. For example, distance can be estimated
from a vision sensor (like RealSense T265 which provides visual odometric
feedback), instability can be estimated from an inertial measurement unit,
collision can be estimated from joint position sensors [39], [40], and slippage
can be estimated from joint position sensors or foot contact sensors with
forward models [29].

be possible to re-train the network to rely on other sensors if
redundancy is present.

In this work, the policies were learned to optimize lo-
comotion speed and stability. In future work, we plan to
include other factors such as energy efficiency. We also intend
to consider learning locomotion patterns for more complex
environments such as uneven ground, stairs, slopes, and pipes.

ACKNOWLEDGMENT

The authors would like to thank Peter Billeschou from the
University of Southern Denmark for providing the Alpha robot
simulation.

REFERENCES

[1] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, “Robots that can
adapt like animals,” Nature, vol. 521, p. 503, May 2015.

[2] M. Oliveira, L. Costa, A. Rocha, C. Santos, and M. Ferreira, “Multi-
objective optimization of a quadruped robot locomotion using a genetic
algorithm,” in Soft Computing in Industrial Applications, A. Gaspar-
Cunha, R. Takahashi, G. Schaefer, and L. Costa, Eds. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2011, pp. 427–436.

[3] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun,
and M. Hutter, “Learning agile and dynamic motor skills for legged
robots,” Science Robotics, vol. 4, no. 26, 2019. [Online]. Available:
https://robotics.sciencemag.org/content/4/26/eaau5872

[4] J. Clune, K. O. Stanley, R. T. Pennock, and C. Ofria, “On the perfor-
mance of indirect encoding across the continuum of regularity,” IEEE
Transactions on Evolutionary Computation, vol. 15, no. 3, pp. 346–367,
June 2011.

[5] Jun Nakanishi, Jun Morimoto, G. Endo, G. Cheng, S. Schaal, and
M. Kawato, “A framework for learning biped locomotion with dynamical
movement primitives,” in 4th IEEE/RAS International Conference on
Humanoid Robots, 2004., vol. 2, Nov 2004, pp. 925–940.

[6] J. Rosado, F. Silva, and V. Santos, “Adaptation of robot locomotion
patterns with dynamic movement primitives,” in 2015 IEEE Interna-
tional Conference on Autonomous Robot Systems and Competitions,
April 2015, pp. 23–28.

[7] S. Ha, P. Xu, Z. Tan, S. Levine, and J. Tan, “Learning to walk in the
real world with minimal human effort,” 2020.

[8] A. Marjaninejad, D. Urbina-Meléndez, B. Cohn, and F. Valero-Cuevas,
“Autonomous functional movements in a tendon-driven limb via limited
experience,” Nature Machine Intelligence, vol. 1, pp. 144–154, 03 2019.

[9] A. J. Ijspeert, “Central pattern generators for locomotion control in
animals and robots: A review,” Neural Networks, vol. 21, no. 4, pp.
642 – 653, 2008.

[10] J. Yu, M. Tan, J. Chen, and J. Zhang, “A Survey on CPG-Inspired
Control Models and System Implementation,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 25, no. 3, pp. 441–456,
March 2014.

[11] M. Pitchai, X. Xiong, M. Thor, P. Billeschou, P. L. Mailänder, B. Leung,
T. Kulvicius, and P. Manoonpong, “CPG driven RBF network control
with reinforcement learning for gait optimization of a dung beetle-
like robot,” in Artificial Neural Networks and Machine Learning –
ICANN 2019: Theoretical Neural Computation, I. V. Tetko, V. Kůrková,
P. Karpov, and F. Theis, Eds. Cham: Springer International Publishing,
2019, pp. 698–710.

[12] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. New York: Addison-Wesley, 1989.

[13] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), vol. 3, Sep. 2004, pp. 2149–2154 vol.3.

[14] M. F. E. Rohmer, S. P. N. Singh, “V-REP: A Versatile and Scalable
Robot Simulation Framework,” in Proc. of The International Conference
on Intelligent Robots and Systems (IROS), 2013.

[15] S. Schaal, Dynamic Movement Primitives -A Framework for Motor
Control in Humans and Humanoid Robotics. Tokyo: Springer Tokyo,
2006, pp. 261–280.

[16] A. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: Learning attractor models for motor
behaviors,” Neural Computation, vol. 25, 2013.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

[17] S. Aoi, P. Manoonpong, Y. Ambe, F. Matsuno, and F. Wörgötter,
“Adaptive control strategies for interlimb coordination in legged robots:
A review,” Frontiers in Neurorobotics, vol. 11, p. 39, 2017.

[18] T. Nachstedt, C. Tetzlaff, and P. Manoonpong, “Fast dynamical coupling
enhances frequency adaptation of oscillators for robotic locomotion
control,” Frontiers in Neurorobotics, vol. 11, p. 14, 2017.

[19] T. G. Brown, “On the nature of the fundamental activity of the nervous
centres; together with an analysis of the conditioning of rhythmic activity
in progression, and a theory of the evolution of function in the nervous
system,” The Journal of Physiology, vol. 48, no. 1, pp. 18–46, 1914.

[20] J. Hellgren, S. Grillner, and A. Lansner, “Computer simulation of the
segmental neural network generating locomotion in lamprey by using
populations of network interneurons,” Biological Cybernetics, vol. 68,
no. 1, pp. 1–13, Nov 1992.

[21] Ö. Ekeberg, “A combined neuronal and mechanical model of fish
swimming,” Biological Cybernetics, vol. 69, no. 5, pp. 363–374, Oct
1993.

[22] M. Thor and P. Manoonpong, “A Fast Online Frequency Adaptation
Mechanism for CPG-Based Robot Motion Control,” IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 3324–3331, Oct 2019.

[23] F. Pasemann, M. Hild, and K. Zahedi, “SO(2)-Networks as Neural
Oscillators,” in Proc. of Computational Methods in Neural Modeling.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 144–151.

[24] F. Pasemann and N. Stollenwerk, “Attractor switching by neural control
of chaotic neurodynamics,” Network: Computation in Neural Systems,
vol. 9, no. 4, pp. 549–561, 1998, pMID: 10221579.

[25] F. Pasemann, “Complex dynamics and the structure of small neural
networks,” Network: Computation in Neural Systems, vol. 13, no. 2,
pp. 195–216, 2002, pMID: 12061420.

[26] S. Steingrube, M. Timme, F. Wörgötter, and P. Manoonpong, “Self-
organized adaptation of a simple neural circuit enables complex robot
behaviour,” Nature Physics, vol. 6, p. 224, jan 2010.

[27] P. Manoonpong, U. Parlitz, and F. Wörgötter, “Neural control and
adaptive neural forward models for insect-like, energy-efficient, and
adaptable locomotion of walking machines,” Frontiers in Neural Cir-
cuits, vol. 7, p. 12, 2013.

[28] M. Thor and P. Manoonpong, “A fast online frequency adaptation
mechanism for CPG-based robot motion control,” IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 3324–3331, Oct 2019.

[29] M. Thor and P. Manoonpong, “Error-based learning mechanism for fast
online adaptation in robot motor control,” IEEE Transactions on Neural
Networks and Learning Systems, pp. 1–10, 2019.

[30] D. Broomhead and D. Lowe, “Radial basis functions, multi-variable
functional interpolation and adaptive networks,” Royal Signals and
Radar Establishment MALVER (United Kingdom), vol. RSRE-MEMO-
4148, 03 1988.

[31] L. Righetti, J. Buchli, and A. J. Ijspeert, “Dynamic Hebbian learning in
adaptive frequency oscillators,” Physica D: Nonlinear Phenomena, vol.
216, no. 2, pp. 269 – 281, 2006.

[32] F. Stulp and O. Sigaud, “Policy improvement methods: Between black-
box optimization and episodic reinforcement learning,” Archive ouverte
HAL, p. 34, 10 2012.

[33] E. Theodorou, J. Buchli, and S. Schaal, “A generalized path integral
control approach to reinforcement learning,” J. Mach. Learn. Res.,
vol. 11, pp. 3137–3181, Dec. 2010.

[34] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evol. Comput., vol. 9, no. 2, pp.
159–195, Jun. 2001.

[35] S. Chatterjee, T. Nachstedt, M. Tamosiunaite, F. Wörgötter, Y. Enomoto,
R. Ariizumi, F. Matsuno, and P. Manoonpong, “Learning and chaining of
motor primitives for goal-directed locomotion of a snake-like robot with
screw-drive units,” International Journal of Advanced Robotic Systems,
vol. 12, no. 12, p. 176, 2015.

[36] Unitree. Laikago. [Online]. Available: http://www.unitree.cc/
[37] M. Thor, J. C. Larsen, and P. Manoonpong, “MORF – Modular Robot

Framework,” in Proc. of The 2nd Int. Youth Conf. of Bionic Engineering
(IYCBE2018). Frontiers, Nov. 2018, pp. 21–23.

[38] L. Righetti and Auke Jan Ijspeert, “Programmable central pattern
generators: an application to biped locomotion control,” in Proceedings
2006 IEEE International Conference on Robotics and Automation, 2006.
ICRA 2006., May 2006, pp. 1585–1590.

[39] J. Faigl and P. Čı́žek, “Adaptive locomotion control of hexapod walking
robot for traversing rough terrains with position feedback only,” Robotics
and Autonomous Systems, vol. 116, pp. 136 – 147, 2019.

[40] M. Palankar and L. Palmer, “A force threshold-based position controller
for legged locomotion,” Autonomous Robots, vol. 38, 03 2014.

[41] S. Dasgupta, F. Wörgötter, and P. Manoonpong, “Information dynamics
based self-adaptive reservoir for delay temporal memory tasks,” Evolving
Systems, vol. 4, pp. 235–249, 05 2013.

[42] S. Herzog, C. Tetzlaff, and F. Wörgötter, “Evolving artificial neural
networks with feedback,” Neural Networks, vol. 123, pp. 153 – 162,
2020.

[43] X. Xiong, F. Wörgötter, and P. Manoonpong, “Neuromechanical control
for hexapedal robot walking on challenging surfaces and surface classi-
fication,” Robotics and Autonomous Systems, vol. 62, no. 12, pp. 1777
– 1789, 2014.

[44] P. Manoonpong, U. Parlitz, and F. Wörgötter, “Neural control and
adaptive neural forward models for insect-like, energy-efficient, and
adaptable locomotion of walking machines,” Frontiers in Neural Cir-
cuits, vol. 7, p. 12, 2013.

[45] I. Hashlamon and K. Erbatur, “Joint sensor fault detection and recovery
based on virtual sensor for walking legged robots,” in 2014 IEEE 23rd
International Symposium on Industrial Electronics (ISIE), June 2014,
pp. 1210–1214.

Mathias Thor received an M.Sc. degree in Robot
Systems from the University of Southern Denmark,
Odense, Denmark, in 2019. He is currently pursuing
a Ph.D. degree with SDU Embodied Systems for
Robotics and Learning at the University of South-
ern Denmark. His current research interests include
neural locomotion control of walking machines,
learning/plasticity, dynamic simulations, and design
of legged robotic systems including their software
interface.

Tomas Kulvicius received his Ph.D. degree in
Computer Science (2010) from the University of
Göttingen, Germany. For his Ph.D. thesis, he inves-
tigated the development of receptive fields in closed
loop learning systems. From 2010 to 2015, Tomas
was a researcher at the University of Göttingen
where he worked on the trajectory generation and
motion control of robotic manipulators. From 2015
to 2017, he was appointed as an Assistant Professor
at the Centre for Bio Robotics, University of South-
ern Denmark. Currently he is a Research Assistant

at the University of Göttingen, Germany. His research interests include the
modeling of closed-loop behavioral systems, robotics, artificial intelligence,
machine learning algorithms, movement generation, and trajectory planning.

Poramate Manoonpong received a Ph.D. degree in
Electrical Engineering and Computer Science from
the University of Siegen, Siegen, Germany, in 2006.
He was the Emmy Noether Research Group Leader
for Neural Control, Memory, and Learning for Com-
plex Behaviors in Multisensory-Motor Robotic Sys-
tems with the Bernstein Center for Computational
Neuroscience, Georg-August Universität Göttingen,
Göttingen, Germany, from 2011 to 2014. Currently,
he is a professor at the College of Mechanical
and Electrical Engineering at Nanjing University

of Aeronautics and Astronautics (NUAA), China. He is also an invited
Professor at the School of Information Science & Technology, at Vidyasir-
imedhi Institute of Science & Technology (VISTEC), Thailand, and serves
as an Associate Professor of Embodied AI & Robotics at the University of
Southern Denmark (SDU), Denmark. His current research interests include:
embodied AI, machine learning for robotics, the neural locomotion control
of walking machines, biomechanics, dynamics of recurrent neural networks,
learning/plasticity, embodied cognitive systems, prosthetic and orthopedic
devices, exoskeletons, brain-machine interface, human-machine interaction,
and service/inspection robots.


