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A fast online frequency adaptation mechanism for
CPG-based robot motion control

Mathias Thor1 and Poramate Manoonpong1

Abstract—In this letter, we present an online learning mecha-
nism called the Dual Integral Learner for fast frequency adapta-
tion in neural Central Pattern Generator (CPG) based locomotion
control of a hexapod robot. The mechanism works by modulating
the CPG frequency through synaptic plasticity of the neural CPG
network. The modulation is based on tracking error feedback
between the CPG output and joint angle sensory feedback of
the hexapod robot. As a result, the mechanism will always try
to match the CPG frequency to the walking performance of
the robot, thereby ensuring that the entire generated trajectory
can be followed with low tracking error. Real robot experiments
show that our mechanism can automatically generate a proper
walking frequency for energy-efficient locomotion with respect
to the robot body as well as being able to quickly adapt the
frequency online within a few seconds to deal with external
perturbations such as leg blocking and a variation in electrical
power. These important features will allow a hexapod robot to
be more robust and also extend its operating time. Finally, the
generality of the mechanism is shown by successfully applying it
to a compliant robotic manipulator arm called GummiArm.

Index Terms—Legged Robots, Neurorobotics, Robust/Adaptive
Control of Robotic Systems

I. INTRODUCTION

LOCOMOTION generation in hexapod robots has been
widely studied [1], [2], [3]. Compared with bipedal

robots, hexapod robots have better flexibility and stability,
making them more suitable for complex environments [4]. In
term of adaptation, Cully et al. [5] showed how a repertoire
of locomotion behaviors could be used to make the system
fault tolerant. When the hexapod robot is damaged (e.g.,
broken or missing legs), the controller starts to search for
new locomotion behaviors to cope with the new state of the
robot using a trial-and-error learning algorithm. This adapta-
tion process requires a few minutes to obtain an appropriate
new walking behavior. Steingrube et al. [6] demonstrated
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environmental-dependent adaptation of a hexapod robot by
using chaos control with a modified Widrow-Hoff learning
mechanism. While the chaos control can generate various
gaits, the learning mechanism allows the robot to select a
proper gait for walking up a slope. This learning scheme needs
several minutes to obtain the upslope gait. Schneider et al. [7]
showed an adaptive bio-inspired control approach, combining
Walknet [8] with higher level control and planning for adaptive
interlimb coordination of the hexapod robot HECTOR. Using
this approach, various behaviors (e.g., gap crossing, obstacle
crossing, and global planning) can be generated to adapt to
complex environments. Owaki et al. [9] introduced another
method for hexapedal interlimb coordination and adaptation
called the Tegotae-based approach. Tegotae is a Japanese
concept for describing how well a perceived reaction matches
an intention. The approach works by increasing the Tegotae
for each limb in a robot, i.e., the difference between the
intention of the controller and the reaction from the environ-
ment. Through this approach, a hexapod robot can perform
self-organized locomotion and adapt to changes in weight
distribution as well as leg amputation.

Different learning and adaptation mechanisms have been
developed for hexapod robots such that they can not only walk
but also show adaptation. The adaptation can usually deal with
leg damage or amputation, weight distribution, and changes in
the environment. Achieving fast online adaptation within a few
seconds for energy-efficient locomotion, damage prevention,
and even dealing with a variation in electrical power, has still
not been sufficiently addressed.

From this perspective, this letter proposes an online learning
mechanism that can automatically generate a proper walking
frequency for energy-efficient hexapod locomotion as well
as quickly adapt online to prevent damage and deal with a
variation of electrical power. It does so by modulating the
CPG frequency through synaptic plasticity of a neural CPG
network. The modulation is based on tracking error feedback
between the CPG output and a joint angle signal of a hexapod
robot. In principle, it adapts to the highest CPG frequency
at which the robotic system can follow the entire generated
CPG trajectory with low tracking error. By doing so, it ensures
that the CPG frequency matches the performance of the robot,
thereby utilizing its full potential.

The consequences of controlling a hexapod robot at a
frequency that cannot be followed include loss of precision,
unwanted movement, energy-inefficient locomotion, and in the
worst-case motor collapse. The tracking error may also impact
the performance of the control system since the desired trajec-
tory is not followed as expected. This is especially critical in
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research concerning trajectory optimization for efficient robot
locomotion or manipulation behaviors.

The learning mechanism developed to reduce the tracking
error is called the Dual Integral Learner (DIL), which is based
on the Dual Learner (DL) by Smith et al. [10]. This mechanism
uses simple gain and integrator terms, directly relating to error
reduction. This is an advantage when compared to state-of-
the-art online frequency learning mechanisms like adaptive
frequency oscillators (AFOs) [11] and frequency adaptation
through fast dynamical coupling (AFDC) [12] since these rely
on a desired correlation or phase shift between the CPG output
and sensory feedback. Such a phase shift is easy to determine
for simple systems (e.g., a mathematical pendulum). However,
when applying such mechanisms to control complex systems
(e.g., a walking robot) trial and error experiments are required
to determine the phase shift. Furthermore, in the case of legged
robots, a phase shift that guarantees near optimal locomotion is
hard to find [13]. Hence, the motivation for using error-based
learning over correlation-based learning is its simplicity and
excellent performance in terms of fast and versatile adaptation
with low tracking error to deal with different conditions. The
DIL can, in this way, be seen as a proposed improvement
to our state-of-the-art correlation-based learning mechanism
AFDC.

Therefore, the main contributions of this letter are: 1) to
describe the novel DIL mechanism used to quickly reduce
an error (sections II-A); and 2) to demonstrate how the DIL
can be integrated with neural CPG-based control to reduce
the tracking error of the joints in a hexapod robot (Sect. III).
Finally, the mechanism will be evaluated against the state-
of-the-art learning mechanism AFDC [12] (Sect. III-B) and
also applied to a compliant robotic manipulator to determine
the strengths and generality of our approach (Sects. IV and
V). To this end, the proposed approach can drive a hexapod
robot for energy-efficient locomotion and give fast online
adaptation within a few seconds to prevent leg damage as
well as being able to deal with a variation of electrical power.
These important features will allow a hexapod robot to be
more robust and extend its operating time.

II. FREQUENCY ADAPTATION MECHANISMS

A. Dual Integral Learner

The DIL, used for error reduction, is based on the DL
presented by Smith et al. [10]. One of the key aspects of
this learner is that it uses fast and slow learners in parallel
as shown in Fig. 1. Each leaner receives the same error and
incorporates a proportion of it into their current estimate of
the perturbation [14]. This is shown by the rules in (1):

xf (n) = Af · xf (n− 1) +Bf · e(n)

xs(n) = As · xs(n− 1) +Bs · e(n)

x(n) = xs(n) + xf (n)

e(n) = f(n) − x(n)

(1)

where xf (n) is the output of the fast learner, xs(n) is the
output of the slow learner, x(n) is the combination of the two
outputs, e(n) is the error or difference between the output x(n)
and a setpoint f(n), Bf and Bs are learning rates, and Af
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Fig. 1: Block diagram of the DIL. The system output (x(n)) is
the sum of the outputs from the fast (xf (n)) and slow learners
(xs(n)). The error (e(n)) is the difference between the system
output and the setpoint (f(n)).

and As are retention factors. The parameter selection is under
the constraint that Bf > Bs and Af < As. The fast learner
consequently learns faster as indicated by a higher learning
rate but also forgets more rapidly as indicated by a lower
retention factor.

The main advantages of this approach are error reduction,
saving in relearning, and spontaneous recovery of previously
learned memories (for a detailed explanation see [14]). How-
ever, the DL suffers from steady-state errors since it only
includes learning rates and retention factors.

To address this issue, we propose the DIL that include
additional integrator components in the two learners. This is
shown with the rules in (2):

xf (n) = Af · xf (n− 1) +Bf · e(n) + Cf ·
∫
e(n)

xs(n) = As · xs(n− 1) +Bs · e(n) + Cs ·
∫
e(n)

x(n) = xs(n) + xf (n)

e(n) = f(n) − x(n)

(2)

where the new parameters Cf and Cs are the integrator
components, accumulating the error over time to make the
learning process correct it. Note that the new parameters are
under the constraints that Cf > Cs.

Fig. 2 shows a learning simulation in the DL and DIL when
exposed to an arbitrary square wave setpoint input alternating
bet ween 0, +1, -1, and +1 again (cf. Fig. 1). It can be seen
that both the DL and DIL show savings in relearning and that
they are able to spontaneously recover to +1 again when the
setpoint is briefly set to -1. The simulation also shows that the
use of the integrator components enables the DIL to remove
the error (i.e., the difference between the setpoint and learner
output) which the DL is not fully able to.

III. NEURAL CPG-BASED CONTROL

In the experiments presented in Sect. IV, the Modular
Robot Framework (MORF) [15] is used as a testbed. MORF
can be configured as either a mammal or an insect with a
different number of legs. For the purpose of this study an
insect configuration with six legs, i.e., a hexapod configuration
(shown in Fig. 3), will be used.

In order to control MORF, a neural CPG-based controller
that makes it walk with a tripod gait has been developed [6].
The main component of the controller is the neural SO(2)
oscillator [16] (acting as a CPG, see Fig. 4). The SO(2)-
based CPG is a versatile recurrent neural network consisting
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Fig. 2: Simulation of learning in the DL (shown in black)
and DIL (shown in orange) when exposed to a square wave
setpoint input. The initial setpoint is 0 in the gray zone, +1 in
the white zones, and -1 in the red zone. The error is given as
the difference between the setpoint and learner output. Unlike
the DIL, the DL is not able to fully remove the error.

BC

CF

FTA) B)

Fig. 3: A) MORF in a hexapod configuration [15]. B) Each leg
consists of three joints; the body-coxa (BC) joint, the coxa-
femur (CF) joint, and the femur-tibia (FT) joint.

of two fully-connected standard additive time-discrete neurons
H0 and H1, both using a sigmoid transfer function. The
SO(2) oscillator can exhibit various dynamical behaviors (e.g.,
periodic patterns, chaotic patterns, and hysteresis effects [6])
by changing its synaptic weights. These dynamical behaviors
of the network can later be exploited for complex locomotion
behaviors. However, the DIL can also be integrated into other
CPG models (e.g., the Van der Pol oscillator [17], Hopf
oscillator, or Rayleigh oscillator [18]) since it only requires
a way to vary the frequency of the CPG.

The outputs of the two neurons in the SO(2) oscillator are
given by (3):

oi(t+ 1) = tanh

 N∑
j=0

wij(t)oj(t)

 , i = 0, ..., N (3)

where oi is the output from neuron i, N is the number of
neurons, and wij is the synaptic weight from neuron i to j.
The two neurons both produce a sinusoidal output with a phase
shift of π/2.

As proven by Pasemann et al. [16] the network produces a
quasi-periodic output when the weights are chosen, according
to (4):(

w00(t) w01(t)
w10(t) w11(t)

)
= α ·

(
cos ϕ(t) sinϕ(t)
− sin ϕ(t) cosϕ(t)

)
(4)

with 0 < ϕ(t) < π as the frequency determining parameter.
Parameter α determines the amplitude and the nonlinearity
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Fig. 4: Neural CPG-based control network, combining the
SO(2) oscillator with the DIL. I) The post-processing (PP) is
responsible for calculating the amplitude from the incoming
signal and filtering it using a digital low-pass single-pole IIR
filter. II) The DIL mechanism. III) The neural SO(2) oscillator
based CPG model. IV) The forward model (FM) for translating
the CPG outputs into expected sensor signals. V) The robotic
system (i.e., the MORF hexapod robot) controlled by the CPG.
VI) The bias enabling the mechanism to increase the frequency
in the case of no tracking error.

of the output oscillations. For this controller, α = 1.01 is
used to obtain harmonic oscillation and an approximate linear
relationship between ϕ and the intrinsic frequency of the
oscillator [12].

The two outputs from the SO(2)-based CPG, having a phase
shift of π/2, are first post-processed and subsequently sent as
position commands to the BC and CF joints. The designed
intralimb coordination makes the two joints move with a phase
shift of π/2 such that the CF joints move first, followed by the
BC joints. This way, the legs will be lifted above the ground
by the CF joints before being moved forward by the BC joints
and lowered down before moving backward. This is to ensure
ground clearance during a swing phase and ground contact
during a stance phase. Note that the FT joints are set to fixed
positions for simplicity. For interlimb coordination to obtain a
tripod gait, we define the coordination by projecting the CPG
outputs through inhibitory synaptic weights (−1) to the BC
and CF joints of the left middle, right front, and right hind
legs and excitatory synaptic weights (+1) to the BC and CF
joints of the remaining legs.

A. Neural CPG-based Control with DIL

In order to let the DIL mechanism adapt the frequency of
the SO(2) oscillator, we integrate the DIL into the neural
control, resulting in the network shown in Fig. 4. Using
this network, the DIL will adapt ϕ (i.e., ϕ = x(n) where
ϕ refers to the synapses of the SO(2) oscillator, see (4))
based on error feedback e(n). The error feedback is given
as the tracking error between the amplitudes of the actual
joint angle sa(n) and the expected joint angle se(n) (i.e.,
e(n) = se(n) − sa(n)). The expected joint angle is obtained
from a forward model (FM) (IV) that is modeled as a simple
gain. The FM can calculate the expected sensory signals from
the control commands given as input to the system. This makes
it possible to compare the CPG output (III) with the actual
joint angle sensory feedback from the walking robot (V).
Finally, the amplitudes of the signals are calculated using the
two post-processing units (PP) (I), which also uses digital low-
pass single-pole IRR filters, to remove noise. The calculation
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of the amplitudes currently exploits that the SO(2) oscillator
is producing a waveform output. Note that the DIL can also
be used to adapt the amplitude of the CPG. However, in
this work, we only focus on frequency adaptation since a
change in amplitude also alters the trajectory performed by the
robot. This is not desired when also working with trajectory
optimization or robotic manipulators where a specific endpoint
is required.

If the amplitude of the expected sensory signal is larger
than that of the actual sensor signal, then the network will
produce a positive tracking error. The DIL will, in this case,
decrease ϕ since the joints cannot follow the desired trajectory
as generated by the CPG. However, negative tracking errors
can only occur from external forces and not from the CPG
output itself. Thus, in order to enable the DIL to increase the
frequency in a reliable way, a small bias B (VI) is subtracted
from the error. In this way, the DIL will get a negative tracking
error when the expected and actual amplitudes match and try
to increase ϕ. An example of the DIL adapting the parameter
ϕ (i.e., synaptic plasticity) in the case of both positive and
negative tracking errors is shown in Fig. 5. It should be noted
that the bias makes the mechanism run with a small constant
tracking error, which in this case 0.005 rad. The bias should
be set according to the properties of the system it is used on,
i.e., some systems allow more tracking error than others. A
larger bias means a larger frequency, larger tracking error, and
faster adaptation when increasing the frequency. Furthermore,
the bias can be completely removed if the frequency is to be
continuously varied by an operator or a navigation module. In
this way, the DIL only adapts the frequency when it is larger
than a certain maximum value defined by the allowed tracking
error in the system.

For the experiments presented in Sect. IV, the network
in Fig. 4 uses the joint angle sensory feedback from a BC
joint of MORF. This is because this joint is responsible for
moving the robot forward during the stance phase and thus
directly influences the walking speed (i.e., the DIL will control
the walking frequency). In all four experiments, the DIL
mechanism uses identical learning parameters; Af = 0.6,
As = 0.9, Bf = 0.8, Bs = 0.4, Cf = 0.015, Cs = 0.005,
and a bias of 0.008 (i.e., seven parameters in total) since
that gives the DIL mechanism the ability to adapt the CPG
frequency while maintaining a low tracking error. Note that
all parameters are empirically chosen.

When using feedback from a single joint the outputs of
both the FM and system (see (IV) and (V) in Fig. 4) have a
dimension of one. However, the network is scalable, meaning
that it can take multiple joint angle values and calculate
the average tracking error. It can also be extended by using
multiple CPGs such that each leg or joint adapts independently.
This extension is useful in decentralized controllers like the
one shown in [19] where each leg has its own CPG.

B. Frequency Adaptation through Fast Dynamical Coupling

To compare the performance of the DIL for frequency
adaptation of hexapod walking, the AFDC mechanism by
Nachstedt et al. [12] is used. AFDC is a state-of-the-art

Fig. 5: Simulation of the DIL when used to reduce the tracking
error. The yellow zone from 50s to 100s indicates that the
maximum frequency of the system is reduced.
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W01

W10

W11W00

W20
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H0

SO(2)-based CPG

Fig. 6: The AFDC mechanism when used on the neural SO(2)
oscillator. The blue parts refer to the AFDC mechanism. It con-
sists of a neuron (H2), enabling the oscillator to synchronize
with the external perturbation P .

frequency adaptation mechanism for CPGs, providing fast and
accurate adaptation for a wide range of target frequencies
when compared to other classical frequency adaptation mech-
anisms like AFOs [11]. It does this by dynamically adapt-
ing the coupling strength of an external perturbation signal
to a CPG. This makes the AFDC engaging in locomotion
controllers where a system needs to react quickly to external
perturbations.

Fig. 6 shows how the AFDC can be combined with the
neural SO(2) oscillator, which is also used in the locomotion
controller as explained in the previous section. The dynamic
coupling of the AFDC is established using a single extra
neuron H2, connected to the SO(2) oscillator through plas-
tic synapses, W20 and W02 (blue arrows). The H2 neuron
calculates a filtered version of the external perturbation signal
P and receives signals via the synapses W02 and WP2. The
two synapses are modulated by the rules in (5) [12]:

W02(t+ 1) = W02(t) + (β0 −W02(t) − κ · o2(t) · o0(t))/τ

WP2(t+ 1) = WP2(t) + (ε0 −WP2(t) − κ · P (t) · o2(t))/τ
(5)

where κ is the correlation learning rate, β and ε are adaptive
coupling strengths, τ is a time constant, o0 is the output from
neuron H0, and o2 is the output from neuron H2. If a large
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difference exists between the intrinsic and target frequencies
(i.e., a large phase shift), the coupling strength is increased to
speed up the adaptation. On the other hand, if there is a small
difference (i.e., a small phase shift), then the coupling strength
is decreased to increase the accuracy of the adaptation [12].

Finally, the SO(2) frequency, determined by the parameter
ϕ, is modulated by the rule in (6) [12]:

ϕ(t+ 1) = ϕ(t) + η ·W20(t) · o2(t) ·W01(t+ 1) · o1(t) (6)

where η is the learning rate and o1 is the output from H1.
The modulation of ϕ influences the synapses of the SO(2)
oscillator (w00, w01, w10, and w11, see (4)) in a long-term
synaptic plasticity manner. The synaptic plasticity will hereby
converge when the phase difference between the CPG output
H0 and external perturbation signal is removed (or when a
desired phase shift is obtained).

While the DIL adapts ϕ based on a tracking error, the
AFDC adapts it based on a desired phase shift ∆φ, between
an external perturbation signal and the CPG output. By using
the joint angle feedback from a BC joint as the perturbation
signal, it is possible to adapt the walking frequency.

Nachstedt et al. [13], described a method for using the
AFDC to adapt the frequency of a CPG controlling a six-
legged robot. They found that for complex systems, like legged
robots, it is not clear which ∆φ between a motor command
(i.e., CPG output) and joint angle sensory feedback will be
optimal. However, by testing various values for ∆φ, a phase
shift of ∆φ = 0.2π was found to produce the fastest and most
energy-efficient locomotion. In the following experimental
setups, a phase shift of 0.2π is therefore used when testing
the AFDC. The remaining parameters for the AFDC are set
according to those specified in [13] with the exception of
the learning rate which is set to 8 resulting in much faster
adaptation.

IV. EXPERIMENTS AND DISCUSSION

In the following four experiments, the MORF hexapod robot
is used to access the performance of the DIL mechanism.
MORF weighs 4.2kg and is equipped with Dynamixel XM340-
350 smart servos, making it possible to read the power con-
sumption, joint angles, and in extension, to use the locomotion
controller presented in Sect. III. The controller is used under
the assumption that the periodic shape of the CPG is given
according to the neurodynamics of the CPG and that only
frequency optimization is required. As described earlier, error
feedback to the DIL is defined as the tracking error between
the amplitude of one BC joint angle signal and the amplitude
of the CPG output driving the joint (efference copy). The BC
joint angle signal is likewise used as the perturbation to the
AFDC mechanism.

To illustrate the generality of the DIL mechanism a fifth
experiment is included where the mechanism is used on a 7
degrees of freedom compliant robotic manipulator arm called
GummiArm [20] (see Fig. 7). In contrast to the joints on
MORF, some joints on the GummiArm are actuated by three
motors. In this setup, one motor acts as a passive stabilizer
while the two remaining joints are connected using compliant

Fig. 7: The GummiArm robot [20]. The neural CPG-based
controller actuates the shoulder and elbow joints in order to
make the arm perform a sawing-like motion.

tendons. Thus, these two motors work as an antagonist-agonist
setup, similar to how the human arm is configured. The Gum-
miArm is equipped with the same neural CPG-based control
as used on MORF but this time with interlimb coordination
making it move in a sawing-like motion. It should be noted that
the controller uses the joint angle sensory feedback from the
shoulder joint of the GummiArm and the CPG-based controller
only actuate the shoulder and elbow joint (see Fig. 7). This is
because this joint is responsible for moving the arm back and
forth, thus directly influencing the sawing speed.

A. Adaptation to robot body

The first experiment was to determine whether the DIL
mechanism can converge to a certain walking frequency (i.e.,
finding a proper ϕ), for various initial internal SO(2) fre-
quencies (i.e., various initial values of ϕ0). In the experiment,
MORF was placed on a stand such that the legs could swing
freely in the air.

Fig. 8 shows that ϕ was adapted for six different initial
frequencies. The walking frequency converged to a mean ϕ
of 0.27 with a standard variance of 0.003. This value leads to
adapted SO(2) synaptic weights of w00 = 0.992, w01 = 0.191,
w10 = −0.191, and w11 = 0.992.

To analyze why the DIL adapts the CPG frequency to 0.27,
a plot of the tracking error and amplitude of the joint angle
sensory feedback against the CPG frequency (ϕ) is made (see
Fig. 9). This shows that the DIL, as expected, adapts the
frequency to the point where the amplitude begins to decrease
and the tracking error increases above the bias. Thus, the
DIL mechanism can adapt the CPG to a specific frequency,
matching the body property of the MORF hexapod robot
which in this case is ϕ = 0.27. In other words, by running
MORF with a CPG frequency of 0.27, the desired trajectory
is performed with a low tracking error and the full potential
of the system is utilized (moving with a high frequency/speed
and a large angle). If MORF moves with a faster frequency
then the tracking error will increase (thereby, it moves with
a smaller joint angle amplitude) and if it moves with a lower
frequency then the full potential of the system will not be
utilized. This mechanism converges toward different walking
frequencies depending on the robot characteristics, e.g., differ-
ent leg morphologies, body weights, and motor performances
(as shown in the next experiment and the experiment with the
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Fig. 8: Adaptation of ϕ for different initial values ϕ0 using
the DIL. All of the trials converges to a mean ϕ of 0.27 with
a standard variance of 0.003.

0.1 0.2 0.27 0.4 0.5 0.6 0.7
0

0.2

0.4 Sensor amp.
CPG amp.
Error
Bias

Fig. 9: Plot of the tracking error (red) and sensor amplitude
from a BC joint of MORF (blue) against the CPG frequency.
The CPG or expected amplitude is shown with a dashed blue
line and the bias with a dashed red line.

GummiArm robot). A video of the experiment can be found
in the supplementary material (video SM1.mp4).

B. Adaptation to a variation of electrical power

In the second experiment, the DIL was applied to adapt the
walking frequency when we abruptly change the voltage or
electrical power to the servo motors of MORF during walking.
Here, we compared the performance of the DIL with the
AFDC. The voltage or stimulus was regulated using an exter-
nal power supply and changed twice during the experiment.
First, it was reduced from 15.5V by 2.7V to 12.8V after 10s of
walking and increased back to 15.5V after 30s. This is similar
to the discharge cycle of a four-cell LiPo battery if each cell
is discharged from 4.2V to 3.5V. The reason for having 15.5V
as the maximum voltage and not 16.8V as in a four-cell LiPo
battery is that the Dynamixel servos have a maximum input
voltage of 16V. When the voltage to the servos is changed,
their performance also changes and the frequency adaptation
mechanisms need to adapt accordingly. The initial adaptation
of the two mechanisms was not included in the experiment.

Fig. 10 shows how the SO(2) parameter ϕ was adapted
in five trials using the AFDC (blue) and DIL (orange)
mechanisms. The lines show the mean ϕ value and mean
tracking error while the surrounding transparent area shows
the standard variance. The DIL mechanism can reduce the
mean tracking error down to 0.008 which is better than the
AFDC (P > 0.999) which has a mean tracking error of 0.01.
It is possible for the DIL to reduce the error even more by
choosing a smaller bias. However, this will result in slower
adaptation when increasing the frequency. It should be noted
that the ϕ value for the DIL is slightly smaller (ϕ = 0.25)

Fig. 10: Adaptation of ϕ using the DIL (orange) and AFDC
(blue) mechanisms. The lines show the mean ϕ value (upper
plot) and mean tracking error (lower plot) while the transparent
area surrounding them shows the standard variance. The
voltage to the servos is reduced by 2.7V from 10s to 30s
(yellow zone). The mean tracking errors for the DIL and
AFDC mechanisms are 0.008 and 0.010, respectively. The
mean cost of transport for the DIL and AFDC mechanisms
are 2.75 and 2.90, respectively.

than the one found in the previous experiment (ϕ = 0.27).
This is because in the previous experiment MORF was placed
on a stand and the legs could move freely whereas here, the
legs carried the robot weight during the stance phase.

During the experiment, it was observed that MORF walked
less straight with the AFDC than with the DIL (see the
supplementary video SM2.mp4). This is due to a consequence
of walking with a larger tracking error. Hence, the DIL can
maintain straight walking even without additional steering or
directional control. The DIL is also useful for a robotic system
that is supposed to precisely follow a certain trajectory, as in
the domain of trajectory optimization.

Reducing the tracking error also results in a lower cost
of transport (CoT), meaning that DIL produces more energy-
efficient locomotion. The CoT is calculated as P ·t

m·g·d , where
P is the power consumption of the servos given by P = V ·I ,
t is the time in seconds, m is the total mass of MORF in kg,
g is the gravity of the earth, and d is the walking distance
covered by MORF. In the experimental results shown in Fig.
10, the mean CoT of the DIL and the AFDC are 2.75 and 2.90,
respectively. This shows that the DIL leads to more energy-
efficient locomotion (P = 0.880).

Finally, since the learning parameters of the DIL easily
relate to the tracking error reduction, i.e., gain and integrator
terms (variables B and C in (2)), the parameters are also easy
to tune for other complex systems. In contrast, the AFDC
reduces tracking error by tuning a CPG frequency toward a
desired phase shift ∆φ. This phase shift is often chosen to
correspond with the system resonance frequency. However, for
complex systems, it is not always possible to identify the phase
shift; therefore, it has to be found empirically. Furthermore, in
the case of legged robots, a phase shift that guarantees next to
optimal locomotion is hard to find since there is no intuitive
correlation between phase shift, tracking error, and CoT as
also pointed out in [13].
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Fig. 11: Adaptation of ϕ to an external perturbation using the
DIL. At 20s (red zone) a leg is shortly blocked by hand. The
DIL immediately reduce the CPG frequency to nearly zero
in response to the high tracking error, resulting in stopping
the leg movement. This way the leg is protected from getting
damaged.

C. Adaptation for damage protection

The third experiment was to determine how the DIL mecha-
nism adapts the walking frequency to an external perturbation.
In the experiment, MORF was again placed on a stand to
enable the legs to move freely in the air. After 20s a leg was
blocked by hand which is equivalent to it getting stuck or
hitting an object while walking.

As shown in Fig. 11, the DIL mechanism quickly decreases
the walking frequency when the leg is blocked. This behavior
can be seen as a self-protection mechanism to prevent damage.
A video of the experiment can be found in the supplementary
material (video SM3.mp4).

D. Multiple adaptations to unexpected situations during con-
tinuous walking

The fourth experiment combined the three adaptation fea-
tures (adaptation to the body, electrical power variation, and
damage protection) during continuous walking. In this con-
tinuous walking experiment (shown in Fig. 12), we set an
arbitrary initial value of the ϕ to 0.35 which generates a high
walking frequency. The DIL was started after 5s and could
quickly adapt to obtain a proper walking frequency in around
5s, allowing MORF to efficiently walk on the floor. At around
60s, MORF experienced a reduction of electrical power. We
simulated this by manually reducing the voltage from 15.5V
to 12.8V for 20s. In order to maintain its walking performance
with a low tracking error, the DIL automatically reduced the
walking frequency. At around 83s, MORF received full power
again whereby we increased the voltage to 15.5V. This made
the DIL increase ϕ to the value found initially, resulting in high
walking frequency as a normal state again. At around 120s,
we blocked one leg of MORF to which the DIL reacted by
reducing ϕ to a very low value; thereby the walking frequency
slowed down. If the leg became blocked for a longer period of

Fig. 12: Adaptation of ϕ using the DIL. First ϕ is adapted
from an initial value of 0.35, then to a reduction of 2.7V in
voltage (yellow zone), and finally to a leg being blocked by
hand (red zone). Note that the DIL starts after 5s (gray zone).
For the three scenarios, the DIL can adapt ϕ to obtain a new
walking frequency within approximately 5s.

time, the DIL would eventually decrease ϕ to almost zero. As
a consequence, MORF will stop moving. This way, the DIL
can protect the robot from damage. A video of the experiment
can be found in the supplementary material (video SM4.mp4).
It is important to note that even though a tripod gait is used
in all experiments, the DIL can also be applied to other gaits
including dynamic ones. This is because the DIL will adapt
the CPG frequency to the maximum one at which the tracking
error is low (cf. Fig. 9) (i.e., independent of the gait/motion
being used). However, additional balancing or posture control
for stability may be required for dynamic gaits.

E. Adaptation for a compliant robotic manipulator arm

The final experiment was designed to determine the general-
ity of the DIL mechanism. In this experiment, the GummiArm
robot was used to follow a sawing-like motion. The DIL
parameters were set to one-half of the values used for the
MORF hexapod robot (i.e., Af = 0.3, As = 0.45, Bf = 0.4,
Bs = 0.2, Cf = 0.0075, Cs = 0.0025, and a bias of
0.008). The reason for doing so was that the GummiArm
produces greater tracking errors due to a larger range of motion
and more compliant joints. Furthermore, it shows that the
parameters of the DIL are not that sensitive and do not require
fine tuning. After 40s when the DIL had initially adapted the
CPG frequency, a person stepped in front of the arm and
blocked its motion for a few seconds.

As shown in Fig. 13, the DIL mechanism can adapt the
frequency initially to fit the GummiArm and quickly decrease
it when the motion is blocked. This behavior can be seen
as both a self-protection mechanism to prevent damage to
the arm itself and a behavior to protect any workers around
the robotic arm. A video of the experiment can be found in
the supplementary material (video SM5.mp4). Note that the
tracking error is noisier when compared to that of the MORF
hexapod robot due to the high compliance of the system (Fig.
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Fig. 13: Adaptation of ϕ to an external perturbation using
the DIL. At 20s (red zone) the arm is blocked. The DIL
immediately reduces ϕ in response to the high tracking error,
resulting in slow arm movement. The arm and any person
nearby is in this way protected from damage.

12) and that the adaptation is a bit slower due to the smaller
learning parameters.

V. CONCLUSION

This letter demonstrates how we developed an error-based
learning mechanism called DIL and applied it to neural CPG-
based control of a hexapod robot called MORF. We showed
that the DIL can be used to quickly reduce tracking error
between actual and desired joint movements. It does so by
adapting the CPG frequency to the highest level where the
joint movements can follow the trajectory generated by the
CPG-based control. In other words, the mechanism ensures
that the CPG frequency matches and utilizes the performance
of MORF. Besides adapting to the performance, the DIL is
also able to adapt the frequency to a change in electrical power
and unexpected external perturbations such as blocking a leg.
When comparing the DIL with a state-of-the-art frequency
adaptation mechanism (i.e., AFDC), it is clear that the DIL
is both faster and better at reducing tracking error. This
additionally results in more energy-efficient locomotion and
straight walking even without steering control. The DIL uses
parameters relating to error reduction, making it easier to tune
for good performance. It is also important to emphasize that
the DIL can achieve multiple adaptations (including adaptation
to body property, damage protection, and unexpected energy
drop) by relying only on a simple objective function (i.e.,
tracking error feedback) rather than multiple complex objec-
tive functions and robot kinematics. Furthermore, to illustrate
the generality of the DIL mechanism, it was also success-
fully applied to control of a compliant robotic manipulator
arm called GummiArm. Finally, it is important to note that
mechanisms (like trajectory optimization) can also be added on
top of the DIL mechanism to achieve amplitude or waveform
adaptation.

In the future, we plan to investigate if the DIL parameters
including the bias can relate to the CPG frequency and tracking

error, in order to tune the DIL in a principled way. We also
plan to investigate if the frequency adapted by the DIL is
near the resonance frequency of the system. In order to do
this we also need to examine the possibility of using DIL for
force controlled systems. Finally, we plan to investigate if it
is possible to extract the tracking error in different ways such
that the DIL can be applied to arbitrary trajectories and does
not have to rely on the waveform of the CPG output.
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