
Versatile modular neural locomotion control with fast
learning

Mathias Thor,1∗ Poramate Manoonpong,1,2

1Embodied AI and Neurorobotics Laboratory, SDU Biorobotics,
The Mærsk Mc-Kinney Møller Institute, The University of Southern Denmark

Campusvej 55, Odense 5230, Denmark

2Bio-Inspired Robotics and Neural Engineering Laboratory,
School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology

Rayong 21210, Thailand

∗Correspondence to: mathias@mmmi.sdu.dk.

1

ar
X

iv
:2

10
7.

07
84

4v
1 

 [
cs

.R
O

] 
 1

6 
Ju

l 2
02

1



Abstract: Legged robots have significant potential to operate in highly unstructured environ-

ments. The design of locomotion control is, however, still challenging. Currently, controllers

must be either manually designed for specific robots and tasks, or automatically designed via

machine learning methods that require long training times and yield large opaque controllers.

Drawing inspiration from animal locomotion, we propose a simple yet versatile modular neural

control structure with fast learning. The key advantages of our approach are that behavior-

specific control modules can be added incrementally to obtain increasingly complex emergent

locomotion behaviors, and that neural connections interfacing with existing modules can be

quickly and automatically learned. In a series of experiments, we show how eight modules can

be quickly learned and added to a base control module to obtain emergent adaptive behaviors

allowing a hexapod robot to navigate in complex environments. We also show that modules

can be added and removed during operation without affecting the functionality of the remaining

controller. Finally, the control approach was successfully demonstrated on a physical hexapod

robot. Taken together, our study reveals a significant step towards fast automatic design of

versatile neural locomotion control for complex robotic systems.

2



Legged robots are mobile robots that have the potential to adapt to any environment on

Earth accessible by their biological counterparts. They are flexible and not limited to paved

or flat surfaces like wheeled robots (1). Legged robots are passively supported by the ground,

enabling larger payloads with less effort when compared to flying robots (2). Another advantage

is their robustness to failures. Unlike wheeled and flying robots, legged robots often have a

redundant number of legs and can, with the right control, continue to move even with several leg

impairments (3–5). As a result of their many advantages, research on legged robots has grown

significantly in the past decades (6). Various kinds of legged robots with different morphologies

have been developed and adopted for domains such as transportation, construction, exploration,

inspection, and manipulation tasks (7–10). Legged robots are, however, still not able to fully

explore and exploit their morphological potentials to achieve motion intelligence, like animals.

Today’s approaches to developing legged robot control can be divided into two groups:

model-based and model-free. Model-based approaches rely on analytical models describing

the robot or system dynamics, which are tedious to construct and frequently inaccurate (11).

Furthermore, specialized control methods often need to be developed to tackle the complex

problem of controlling legged robots, requiring a lengthy design process and manual parameter

tuning (12). Many model-based approaches apply a modular controller design whereby the

controller is divided into smaller sub-modules that are decoupled and easier to design. For

example, the popular control approaches presented in (13–15) use template-dynamic-based sub-

modules to approximate the robotic system as a point mass and calculate the next foothold or

joint positions. The next sub-modules use these positions to compute trajectories to be followed.

All sub-modules can be individually hand-tuned to adapt behavioral properties such as body

elevation, step length, and step height. Despite these advantages, the approach is limited by the

model accuracy and the fact that they are laborious. A controller must be manually developed,

tuned, and tested, which often takes months (11). Furthermore, this must be done for every new

3



robot and task.

On the other hand, model-free approaches can overcome many of the issues associated

with model-based approaches by learning controllers directly from interacting with the envi-

ronment using data-driven methods without the need for system or environment models. Many

model-free approaches use reinforcement learning (RL) algorithms, often for policy optimiza-

tion, where control parameters are tuned based on a reward function and extensive interactions

with the environment. Model-free control thereby uses the fact that in many cases, especially

for artificial legged locomotion, the model needed to predict and understand the physical dy-

namical system is a lot more complicated than the model needed to control the system. The

controller is often implemented as a neural network where the network weights are used for

control parameter optimization. Neural networks come in many sizes but are usually large

(deep) and complex, with millions of weights to be learned. Large complex controllers, such

as those presented in (1, 11, 16–19), display state-of-the-art locomotion control, but suffer from

slow learning, with simulated learning times ranging from days to months. Simulated time is

the time used by the robot inside the simulated environment when learning and therefore inde-

pendent of the computer performance. The framed neural networks are also hard to compre-

hend, making it difficult to analyze and explain the learned control policy (non-explainable AI),

thereby reducing user trust. Additionally, the complexity makes it hard to extend the framework

with additional controllers in a modular way and the controllers often rely heavily on sensory

information, which introduces a point of failure in cases of sensory fault. Sensory information

is undoubtedly important for legged robot control and essential for adapting to unknown envi-

ronments with difficult terrain. However, when sensory information is tightly coupled with the

controller, it is difficult, and in some cases impossible, for the controller to continue operating

in the case of sensory failures. On the other hand, the controller must not be too simple either. A

simple controller, like those in (5, 20), does not facilitate complex locomotion control policies,

4



thus limiting the performance of the robot.

To address the issues associated with current state-of-the-art approaches, we present a flex-

ible modular neural controller with fast learning for motion intelligence1 of legged robots. The

controller inherits all the advantages of model-free methods while addressing the problems of

existing methods by being simple and easy to understand. Using this control approach, we

demonstrate how a model-free approach allows fast learning of open- and closed-loop sub-

behavior control modules, which encode different robot behaviors/skills (see Fig. 1). Our con-

troller is inspired by animal locomotion control principles, where locomotion is largely accom-

plished as an unconscious act. In principle, animal locomotion control comprises a genetically-

encoded structure of the neural system such that animals can spend their first movement of

life tuning the system instead of learning from scratch (21). Biological studies has revealed that

central pattern generators (CPGs) and premotor networks are encoded in these systems (21–23).

The CPG induces a natural gait with a strong prior on the agent’s action space thereby signif-

icantly reducing the number of control parameters (24) while premotor networks reshape the

CPG outputs. Inspired by this, the core of our controller combines a bio-inspired CPG with a

premotor neural network into a so-called CPG-RBF network (4) (see the base control in Fig.

1a). Only a few plastic synapses (dashed lines in Fig. 1a) needs to be learned to encode a base

locomotion behavior. This locomotion behavior or base control module lays the foundation for

the entire controller and does not rely on sensory information. As a result, it will continue to

function even if all the sensors of the legged robot fail.

Although CPGs can generate motor patterns without sensory feedback, it is still crucial

when modulating the motor pattern to accommodate irregularities, such as obstacles and un-

even terrain, orienting toward a goal, and orienting away from an obstacle. This ability is often

referred to as ”sensorimotor integration” and plays a major role in animal locomotion (22, 23).
1In this context motion intelligence refers to emergent, adaptive, and versatile locomotion behaviors that allow

a legged robot to autonomously navigate in complex environments

5



Fig. 1. Overview of the versatile modular neural locomotion controller. a, The controller comprises
an open-loop base controller that constitutes the foundation for sub-behavior control modules encoding
different robot behaviors/skills. b-c, The modules can be combined and used in parallel to enable a robot
to traverse complex environments. In this work, we learn directional locomotion (purple circle), obstacle
reflex (blue circle), body posture (green circle), and several advanced (dark gray circle) control modules.
The base locomotion behavior (red circle) is encoded in the plastic synapses of the base controller shown
with dashed lines in a, while the sub-behaviors are incrementally added to the controller in parallel
through additional plastic synapses. In b and c, six and eight snapshots of a hexapod robot traversing a
complex obstacle are shown. Each snapshot is indicated with circles, whose colors corresponds to the
control modules being primarily used at that moment.

Similar to animal locomotion, sensorimotor integration is also essential for legged robot con-

trol. Inspired by this, together with the fact that walking animals exhibit a modular organization

of locomotion control elements (25), we introduce primitive closed-loop sub-behavior control

modules that can be added to the base controller (see Fig. 1). The sub-behavior modules in-

6



tegrate sensory information and are, using a novel approach, implemented in parallel with the

plastic synapses of the premotor network (for details, see Methods section). Sensory infor-

mation is in this way able to modulate the output of the base controller based on the synaptic

weights of their respective module. The primitive closed-loop modules can be quickly learned

independently of each other using general objective functions and learning environments. The

learned modules can afterward be added to the base controller and used in parallel without

additional coordination mechanisms to achieve emergent locomotion control for complex envi-

ronments requiring multiple sub-behaviors to navigate (see Fig. 1b-c). Therefore, the ability to

traverse complex environments is not considered a single behavior but as emergent behaviors

derived from multiple sub-behaviors that are combined and activated when needed. To addi-

tionally show that the proposed control structure can also learn more advanced behaviors, the

closed-loop modular structure is used to learn new advanced control modules that can be added

in parallel to the existing base and closed-loop control modules. The advanced control modules

can be activated by higher-level control signals from the user or higher-level control (see Fig.

1a). In our approach, the robot has the ability to learn new and forget existing behaviors without

destroying existing ones, which is a common problem of neural network learning (1,11,16–19).

Forgetting behaviors is especially important in cases of sensory fault since those behaviors

relying on broken sensors can be removed online. Finally, the separation of sensorimotor coor-

dination into different control modules and the simplicity of the CPG-RBF network make the

system very transparent and explainable (explainable AI (26)).

In this work, we demonstrate how our control approach can be applied to a complex hexa-

pod robot (called MORF (27)) powered by 18 electric actuators. Firstly, an open-loop base

controller is learned as a basis for robot walking. Three primitive closed-loop sub-behavior

control modules for directional locomotion, obstacle reflex, and body posture stabilization are

then incrementally added to the base controller. These controllers are learned separately in

7



simple environments and later combined to obtain versatile emergent locomotion behaviors for

traversing a complex environment both in simulation and the real world. Finally, we addition-

ally learn five advanced control modules for locomotion at different heights (over and under

obstacles), with narrow legs, on a pipe, and vertically between two walls. Together with the

base and primitive modules, the five advanced control modules are used for traversing a highly

complex environment in simulation. To this end, this study provides the following contribu-

tions beyond state of the art in robot locomotion control: 1) a simple modular neural controller,

inspired by animal locomotion, which is embodied, scalable, transparent, and explainable; 2)

fast and simple learning (within minutes) due to an encoded CPG-RBF network structure and

few plastic synapses; 3) the ability to combine modules implementing different robot behaviors

for locomotion in complex environments; 4) the ability to learn new and forget existing robot

behaviors without compromising the rest of the controller.

Results

Firstly, we demonstrate that our control structure can learn an open-loop base controller, en-

abling MORF to walk straight. We then present the results from learning three primitive closed-

loop control modules added on top of the base controller (see Fig. 1a). The first closed-loop

control module implements obstacle reflex behavior, enabling MORF to negotiate obstacles in

its path. The obstacle reflex controller uses a local optic distance sensor placed on the head of

MORF. The second closed-loop control module implements body posture behavior through ori-

entation sensory feedback from an inertial measurement unit (IMU) to minimize tilt movement.

Finally, the third closed-loop control module implements directional locomotion behavior, en-

abling MORF to dynamically change its direction of motion.

Each controller is trained independently of each other on simple tasks and environments

in simulation (see Supplementary Section S1 for simulation details). However, the controllers

8



can later be combined and used in parallel for locomotion in complex environments. This is

evidenced in a task wherein the base and three primitive controllers are used to traverse an

environment with many obstacles and uneven terrain. This task is also validated on the physical

MORF robot to demonstrate that the controller can be directly transferred to a physical system

without any modification and operate in real-time. Through this task, we further show how our

controller overcomes sensory fault by disabling and enabling the obstacle reflex control module

online (Supplementary Section S3 and Video S9 shows the behavior when also disabling the

other primitive modules one by one).

Finally, to demonstrate advanced emergent behaviors achieved by the proposed control ap-

proach, we present the results from learning five advanced control modules which are added on

top of the base controller. The five additional modules can be activated and deactivated using

higher-level control inputs and they enable MORF to perform advanced locomotion modes (see

Methods section). In this work, the activation of modules is done manually, but it could easily

be coupled with higher-level control. The first control module enables MORF to locomote with

the body lifted high off the ground such that it can walk over obstacles in its way. The second

module enables MORF to locomote with the body close to the ground such that it can squeeze

under obstacles. The third module enables MORF to locomote with the legs close to the body

such that it can fit in narrow spaces. The fourth module enables MORF to climb on pipes. The

fifth module enables MORF to climb between walls vertically. In a final task, the base, three

primitive, and five advanced controllers are merged to generate emergent adaptive behaviors to

traverse a complex environment with many complex obstacles (see Fig. 1c). The generalization

and limitation of each primitive and advanced control module are investigated and discussed in

Supplementary Section S2 and shown in Supplementary Video S8.

9



Results of learning the open-loop base controller

The base controller implements an open-loop locomotion behavior and is the foundation for

the eight additional control modules. The base locomotion behavior is encoded in the plastic

synapses between the premotor network and the motor neurons (see Fig. 1a). Each plastic

synapse amplifies or suppresses specific parts of the periodic CPG output based on the activity

of the corresponding RBF neuron and its weight. The outputs of the motor neurons are provided

as position commands to the three leg joints J0, J1, and J2 in each of MORF’s six legs (see

Methods section). The base locomotion behavior is learned in the simulated environment shown

in Fig. 2a. The learning process continues until the reward feedback converges, and a final set

of weights for the behavior is learned. For the base locomotion behavior, the reward feedback

is given by the distance walked and stability of the robot computed as the sum of variance in

body yaw, pitch, and roll, as well as body height. Fig. 2b shows the resulting joint trajectories

during learning, and Fig. 2c shows the mean and standard deviation (SD) of the reward for

each iteration. The mean and SD are calculated over five learning sessions of 100 iterations

each. Fig. 2b also shows that the reward feedback converges after 20 iterations or 16 minutes of

simulated time. Supplementary Video S1 shows different iterations during the learning process.

Results of learning the primitive closed-loop control modules

The three primitive closed-loop control modules are added on top of the base controller to mod-

ulate the already learned base locomotion trajectories. They are all encoded in plastic synapses

that receive sensory feedback and runs in parallel with the synapses of the base controller (see

Methods section). Each control module is learned in different simulated environments with the

already learned base controller. The mean and SD of the reward are calculated over five learning

sessions of 100 iterations each.

The first primitive control module implements an obstacle reflex behavior, using binary sen-

10



Fig. 2. Results of learning the base and obstacle reflex controllers. a-c, results of learning the
base controller. a, the simulated environment and learned base locomotion behavior – the red MORF
model shows an earlier time step. b, the learned leg joint trajectories (J0-2) for a single leg. The solid
lines show the converged trajectories, while the transparent lines show the intermediate joint trajectories
starting from the first iteration. c, the mean and SD of the reward per iteration. d-f, results for learning
the obstacle reflex controller. d, the simulated environment and learned obstacle reflex behavior – the
red MORF model shows an earlier time step. e, the top plot shows the normalized optic distance sensor
values with (solid line) and without (dashed line) the obstacle reflex controller. The bottom plot shows
the three leg joint trajectories (J0-2) of a front leg with (solid line) and without (dashed line) the obstacle
reflex controller. f, the mean and SD of the reward per iteration.

sory feedback from an optic distance sensor placed on the head of MORF. The binary feedback

is filtered using three low-pass single-pole infinite impulse response (IIR) filters in series. By

placing the IIR filters in series, it is possible to add memory and consequently, retain the sen-

sory feedback for a longer time. The control modules are trained in a simulated environment

where MORF walks towards an obstacle in the form of a 0.04m thick plate, as shown in Fig.

2d. The reward feedback is given as the distance walked as well as the stability of the robot.

Fig. 2e shows the sensory feedback and joint trajectories of a single front leg with and without

the learned reflex controller. Fig. 2f shows the mean reward, with the reward feedback con-

verging within 10 iterations or 19 minutes of simulated time. The longer simulated time per

iteration when compared to that of the base controller is caused by a longer roll-out length.

11



Fig. 3. Results of learning the body posture and directional locomotion controllers. a-c, results for
learning the body posture controller. a, the simulated environment and learned body posture behavior
– the red MORF model shows an earlier time step. b, the top plot shows the tilt sensor values with
(solid line) and without (dashed line) the body posture controller. The bottom plot shows three leg joint
trajectories (J0-2) of a left leg with (solid line) and without (dashed line) the body posture controller.
c, the mean and SD of the reward per iteration. d-f, results for learning the directional locomotion
controller. d, the simulated environment and learned directional locomotion behavior – the red MORF
model shows an earlier time step. e, the top plot shows the heading direction error with (solid line)
and without (dashed line) the directional locomotion controller. The bottom plot shows three leg joint
trajectories (J0-2) of a right leg with (solid line) and without (dashed line) the directional locomotion
controller. f, the mean and SD of the reward per iteration.

Supplementary Video S2 shows different stages of learning the obstacle reflex control module.

The second primitive control module implements a body posture controller, using orienta-

tion sensory feedback from an IMU. The controller is trained in a simulated environment where

MORF walks with its right legs on an obstacle in the form of a 0.04m thick plate as shown

in Fig. 3a. The reward is given as the distance walked and the stability of the robot with an

emphasis on avoiding tilting. Fig. 3b shows the sensory feedback and joint trajectories of a

right leg with and without the learned body posture controller. Fig. 3c shows the mean reward

for each iteration, with the reward feedback converging within 20 iterations or 16 minutes of

simulated time. Supplementary Video S3 shows different stages of learning the body posture

12



control module.

The third primitive control module implements a directional locomotion behavior, also using

orientation sensory feedback from an IMU. The controller is trained in a simulated environment

where a sphere will spawn after a few seconds, as shown in Fig. 3d. The sensory feedback

is then converted to the error between the heading direction of MORF and the direction of

this sphere. The reward feedback is the distance walked, the robot’s stability, and the error in

heading direction. Fig. 3e shows the heading direction error and joint trajectories of a left leg

with and without the learned directional locomotion controller. Fig. 3f shows the mean rewards

for each iteration, with the reward feedback converging within 20 iterations or 24 minutes of

simulated time. The longer simulated time per iteration is again due to an increased roll-out

length. Supplementary Video S4 shows different stages of learning the directional locomotion

control module.

Using all controllers and deploying on a physical robot

One of the main advantages of modular neural controllers is that the learned controller modules

can be used in parallel without any additional modification or network. Fig. 4a-b shows eight

snapshots of how the base, obstacle reflex, body posture, and directional locomotion control

modules can be used to traverse a complex environment both in simulation and on a physical

robot in real-time. During walking, we simulate a temporary failure in the distance sensor

placed on the head of MORF. Consequently, the obstacle reflex controller is manually swapped

out, and MORF needs to rely on the other controllers to finish the task. In simulation (Fig. 4a),

an alternative curving path (red path around the obstacle) is given such that MORF will take

this path when the obstacle reflex controller is swapped out. In the real-world setup (Fig. 4b),

the alternative curving path is provided by a human operator using a joystick and the camera on

MORF. To later increase the autonomy of the robot, a fault detection algorithm, such as those

13



Fig. 4. Results for using the learned primitive control modules. a, the simulated environment and
eight snapshots of MORF when using the base controller (red circle), obstacle reflex controller (blue
circle), body posture controller (green circle), and directional locomotion controller (purple circles).
Each snapshot is indicated with circles, whose colors corresponds to the control modules being primarily
used at that moment. Note that all control modules are active for the entire run with the exception of 4©
and 5©, where the distance sensor placed on the head of MORF is temporally broken and the obstacle
reflex controller disabled (blue circle with a cross). Consequently, MORF is steered around the obstacle
(the red path) instead of traversing it (the green path). b, the real-world environment which is a copy of
the simulated environment. The snapshot circles indicate the same as for the simulated case in a. The
image is cropped to resemble the simulated environment, and the borders of the obstacles have been
highlighted. For the original image, see Supplementary Video S6. c, the normalized contribution to the
base controller from the three primitive control modules.

presented in (28–30), could be used to swap out the faulty control modules. The alternative path

or desired walking direction could also be provided by high-level control algorithms, such as the

path finding algorithms presented in (31, 32). Fig. 4c shows how and when the three primitive

control modules are activated and used in parallel. Here, all three primitive control modules are

used in parallel on several occasions resulting in emergent behaviors. Supplementary Video S5

shows the simulated MORF traversing the course using all the controllers, while Supplementary

Video S6 shows the performance of the controller on the physical MORF. The Supplementary

Videos also show how MORF performs with fully functional sensors for the entire course (i.e.,

14



using the green path in Fig. 4a-b).

Results of learning advanced control modules

Fig. 5a-e shows the five advanced behaviors included in this study together with the mean re-

ward per iteration, where the reward feedback is converging within 28 minutes of simulated

time on average. The five behaviors enable MORF to locomote on pipes, vertically between

two walls, over and under obstacles, and in narrow spaces. Each control module is learned in

different simulated environments with the already learned base controller. The mean and SD

of the reward are calculated over five learning sessions of 100 iterations each. As discussed in

Supplementary Section S2, the primitive closed-loop modules generalize to most of the behav-

iors produced by the advanced control modules. In many cases, the emergent behaviors even

show better performance when compared to that of the advanced control module alone. By

using both the advanced and primitive control modules MORF is able to adaptively traverse the

complex environment shown in Fig. 5f and Supplementary Video S7. Fig. 5g shows when the

eight modules are activated and used in parallel. Finally, Supplementary Video S10 shows the

behavior when disabling each of the eight modules one by one.

Discussion

The bio-inspired modular neural locomotion controller presented in this work comprises several

independently learned control modules that encode different robot behaviors. We demonstrated

that our novel approach can successfully learn an embodied open-loop base controller and,

subsequently, learn three primitive closed-loop control modules as well as five advanced control

modules that can adapt the base controller to complex environments. Our approach significantly

reduces the complexity of learning controllers for legged locomotion by making them modular

such that they can be learned sequentially. A modular setup has several advantages. Firstly, it is

15



Fig. 5. The advanced behaviors and the results for using all eight control modules. a, pipe climbing
behavior. b, wall climbing behavior. c, high locomotion behavior. d, low locomotion behavior. e, nar-
row locomotion behavior. a-e also shows the mean and SD of the reward per iteration. f, the simulated
environment and 10 snapshots of MORF when using the base controller (red circle), three primitive con-
trollers (purple, blue, and green circles), pipe climbing controller (gray circle), wall climbing controller
(yellow circle), high locomotion controller (orange circle), low locomotion controller (brown circle), and
narrow locomotion controller (pink circle). Each snapshot is indicated with circles, whose colors corre-
sponds to the control modules being primarily used at that moment. g, the normalized contribution to the
base controller from the three primitive and five advanced control modules.

possible to use simple objectives and test environments where reward feedback convergence is

more likely. Secondly, the controller can continue to grow with new modules or robot behaviors

for specific environments as required. Control modules can likewise be removed, which is

especially useful in cases of sensory faults. With only three layers, the neural control structure

of our controller is also simple. As a result, only 60 learning parameters per control module

(20 per joint) need to be learned, requiring 28 minutes of simulated learning time on average.

These properties make the controller a promising method for future research on online learning

16



on physical robots. The fast learning is due to the simplicity of the neural control architecture,

making it easier to comprehend and explain, e.g., by analyzing how sensory feedback modulates

the base locomotion trajectories. Finally, it was also demonstrated that the controller can be

deployed on a physical system where the primitive control modules can be used in parallel

without any additional modification. Note that the presented approach is not limited to the

hexapod robot or environments used in this work. We consider the results presented in this

paper as a step toward a general, scalable, analyzable, and explainable locomotion controller

for complex legged locomotion control.

In (18), a modular locomotion control architecture called multi-expert learning architecture

(MELA) was recently presented. The MELA contains multiple expert neural networks, each

with a unique motor behavior and gating neural network (GNN), fusing experts dynamically

into a versatile and adaptive neural network. MELA uses a two-stage learning approach. In the

first stage, expert network modules are trained on specific tasks, while in the second stage, all

expert modules are co-trained with the GNN that learns how to blend the output of the experts

for various tasks. Compared to a single complex deep neural network for locomotion control, as

in (11), the MELA architecture is more explainable and biologically plausible. However, each

expert module, including the GNN, still use complex, hard to understand, deep neural network

structures and, with the two-stage learning approach, require days of simulated time to optimize.

Moreover, individual experts cannot be removed or added online since they are co-trained and

needed by the GNN. Finally, all expert networks, including the GNN, tightly integrate sensory

feedback. This makes the architecture vulnerable to sensory failure since the experts cannot be

removed online.

Our modular setup is comparable to the subsumption architecture (33); a control architec-

ture that couples sensory feedback which actions in an intimate, bottom-up fashion. It does so

by dividing the complete behavior into sub-behaviors (or modules). These modules are then

17



organized into layers, with each layer implementing a particular behavioral competence (e.g.,

explore environment, avoid obstacle, etc.). These layers are placed in a hierarchy where higher

levels are able to combine or even inhibit the lower levels. In a similar way, some of the ad-

vanced control modules inhibit non-compliant primitive control modules (see Supplementary

Section S2). An advantage of our approach is that while in the subsumption architecture, mod-

ules are typically designed manually, the modules are learned automatically in our approach.

Finally, in both our controller and the subsumption architecture, the robot can still operate when

some modules are missing, though with reduced capabilities.

As mentioned above, the three primitive closed-loop control modules presented in this work

can be used in parallel without any additional modification. However, a limitation is that by

continuing to add behavior-specific primitive modules to extend the controller’s capabilities,

different modules may start to interfere with one another. Like in the case of the advanced

control modules, a solution is to use high-level control, like the subsumption architecture, such

that modules can inhibit each other based on the overall objective.

Even though the proposed control method allows for largely automated discovery of con-

trollers, it still requires human expertise when designing training environments and reward func-

tions. With a good understanding of the learning algorithm and task, similar to those presented

in this work, the process of designing the rewards function and training environment as well

as learning the control modules can take less than a day. To use the proposed controller for

other simulated robots with different morphologies, modeling effort is required. The body and

kinematics of the new robot must be modeled in simulation. Sensors and actuators likewise

need to be set up, such that the relevant parameters are set accordingly. To account for model-

ing imprecision, noise can be applied to different aspects of the simulation to make the learned

controller more robust. The general idea is to accept simulation imperfections while making

the controller robust to variation (34). Such robustness can be achieved by applying noise to the

18



uncertain aspects of the simulation.

In summary, this work presents how simple neural open- and closed-loop control modules

can be combined for complex locomotion control. Our approach utilizes some of the fundamen-

tal principles behind biological control, and can therefore serve as the basis for further studies

on animal locomotion. Compared to state-of-the-art artificial locomotion methods, our method

learns faster (reducing the learning time from days to minutes of simulated time), is simpler,

and more flexible.

Methods

This section describes in detail the modular neural locomotion controller, learning process, and

physical robot. An overview of the training loop is shown in Fig. 6. The CPG-RBF network

that combines a CPG with a radial basis function (RBF) network was first introduced in (4) as a

single open-loop non-modular locomotion controller. The CPG outputs a rhythmic wave-shaped

signal, and the RBF network, acting as a premotor network, reshapes this signal based on the

robot morphology and desired behavior. In this work, we significantly extend the previous study

and demonstrate that the controller can be expanded with primitive closed-loop and advanced

control modules (see Supplementary Fig. S2). These modules expand the capabilities of the

controller, enabling legged robots to adapt in complex environments without compromising the

simplicity or robustness of the control structure.

Central pattern generator

To generate the basic rhythmic signals for locomotion, we use a central pattern generator (CPG).

A biological CPG is a cluster of nerve cells or interconnected neurons within the thoracic gan-

glia of invertebrates and spinal cord of vertebrates (22). The CPGs play a key role in locomo-

tion and other rhythmic movements (35, 36). This is because they can generate motor patterns

19



Fig. 6. Detailed overview of the versatile modular neural locomotion controller. a, the CPG-RBF
network consisting of a CPG (N0−1), a premotor/RBF network (P0−h), and motor neurons (M0−j). The
outputs of the motor neurons are target positions for the joints of the robot. The shape of the motor neuron
output is encoded in the plastic synapses between the RBF layer and motor neurons. In other words,
these plastic synapses encode the robot behaviors and are therefore optimized in the training loop. b,
one period of the CPG outputs, randomly generated plastic synapses (bars in the plot), and motor neuron
output. c, novel neural architecture enabling additional controllers or motor behaviors to be added in
a modular way. The presented architecture consists of an open-loop base controller (Wb0) with three
primitive closed-loop controllers on top for obstacle negotiation, body posture control, and directional
locomotion control (B1−3 or weight sets Wb1−3), respectively. The three closed-loop controllers receive
feedback from three sensors, where S1 is the binary feedback from an optic distance sensor, S2 is the tilt
movement from an inertial measurement unit, and S3 the error between the actual and desired heading
direction. In simulation, the desired heading direction is provided by waypoints and on the real robot by
a joystick.

without requiring sensory feedback or any functional link to higher brain centers. In the CPG-

RBF network, the abstract SO(2)-oscillator based artificial neural CPG model is used (37) (see

the CPG in Fig. 6a). The SO(2)-oscillator is a neural network consisting of only two fully-

20



connected standard additive discrete-time neurons (N0−1), both using a sigmoid transfer func-

tion. The SO(2)-oscillator can produce rhythmic output signals with a phase shift of π/2 and

display various dynamic behaviors (e.g., periodic patterns with varying frequencies, chaotic

patterns, and hysteresis effects (38–40)) by adjusting its synaptic weights through sensory feed-

back or manual control. These dynamical network behaviors can subsequently be exploited for

complex locomotion modes (e.g., walking at different frequencies (41), chaotic leg movement

for self-untrapping of legs that are stuck (42)).

The two SO(2)-oscillator outputs are given by,

oi(t+ 1) = tanh

(
N∑
j=0

wij(t)oj(t)

)
, (1)

where oi is the output of neuron i, N is the number of neurons, and wij is the weight of the

synapses between neuron i and j.

As proven by Pasemann et al. (37), the network produces a quasi-periodic output when the

weights are chosen as,(
w00(t) w01(t)
w10(t) w11(t)

)
= α ·

(
cos ϕ(t) sinϕ(t)
− sin ϕ(t) cosϕ(t)

)
, (2)

where ϕ is the frequency-determining parameter, α determines the amplitude and the nonlinear-

ity of the output oscillations. In this study, we use α = 1.01 and ϕ = 0.01π to obtain harmonic

oscillation with a frequency of≈ 0.30 Hz. The two SO(2)-oscillator outputs can be seen in Fig.

6b. Note that the frequency may be learned and optimized (41) together with the trajectory but

is fixed for the purpose of this study.

Premotor network

To reshape the otherwise fixed wave-shape output from the SO(2)-oscillator, a premotor net-

work is used. As the premotor network, we use the RBF network; an artificial neural network

with radial basis activation functions (43). The RBF network is compact; consisting merely of

21



a single hidden layer together with the input and output layer. For the CPG-RBF network, the

CPG outputs form the input layer, while the motor neurons from the output layer (see Fig. 6).

As mentioned above, the activation functions of the hidden neurons are radial basis functions,

chosen in the case of the CPG-RBF network as two-dimensional Gaussian functions. RBF net-

works are commonly used in function approximation tasks and are, therefore, well suited to

reshape the CPG outputs (43). The reshaping is achieved by letting the activation of hidden

neurons in the CPG-RBF network to encode the joint positions at a particular phase in the step-

ping cycle. In this way, the CPG-RBF network will be able to either amplify or suppress a

particular part of the CPG signal and ultimately produce arbitrary shaped rhythmic joint target

trajectories. The target trajectories are encoded in the plastic synapses connecting the hidden

layer to the motor outputs (blue and red connections in Fig. 6). The activation functions of the

hidden RBF neurons are given as,

Ph = e
−
(

(on0−µh,0)
2+(on1−µh,1)

2

σ2
RBF

)
, (3)

where, µh,0 and µh,1 are two means of RBF neuron Ph, σ2
RBF is the common variance for the

two means, and Ph is the response of the RBF neuron when receiving input on0 and on1 from

the CPG. The means are manually set such that the activations of the hidden RBF neurons are

uniformly distributed along one period of the CPG outputs. More specifically, the means are

calculated as,

µh,x = onx

(
(h− 1) · T
H − 1

)
, (4)

where x is the index of the CPG outputs, T is the CPG signal period (T ≈ 1/0.30 Hz), andH is

the size of the hidden layer. By uniformly distributing the means along one CPG signal period

it is possible to reshape parts of the CPG outputs without the means needing to be learned. For

instance, when using H = 20, it is possible to reshape the jth joint trajectory at the center of its

rhythmic movement by altering synaptic weight wp10,j from the tenth hidden RBF neuron P10

22



to motor neuron Mj .

The size of the hidden layer or amount of RBF neurons, H , directly correlates to the com-

plexity of the target trajectory. A large hidden layer can facilitate complex trajectories that can

approximate virtually any function, while a small hidden layer only can generate simple trajec-

tories. However, a small hidden layer benefits from having few policy parameters and, conse-

quently, a faster convergence rate. While the size of the hidden layer correlates with the trajec-

tory’s complexity, the common variance of the RBF neurons, σ2
RBF , correlates with its smooth-

ness. A high variance results in smooth trajectories, while a lower allows more high-frequent

trajectories. A trade-off thus exists, and in this study, we experimentally set σ2
RBF = 0.04 and

H = 20, allowing the training of smooth and complex trajectories at reasonable convergence

rates (4). Specifically, it was observed that a lower σ2
RBF resulted in jerky trajectories, while

a higher one produced simplistic trajectories with low returns (i.e., the learned periodic trajec-

tories had almost symmetrical ascending and descending slopes). For H , it was observed that

a smaller hidden layer could not produce complex trajectories (e.g., periodic trajectories with

asymmetrical ascending and descending slopes and different velocities as shown in Fig. 2b) as

well as obtain high returns. In contrast, a larger hidden layer only reduced the convergence rate

and did not improve the return.

Fig. 6c shows our novel way of expanding the CPG-RBF network with new behaviors and

sensorimotor integration. The sensory feedback is integrated by introducing neurons (B1−3)

in parallel to the synapses connecting the RBF to the motor neurons. As explained above, the

weights of these synapses encode the joint trajectories or base locomotion behavior. The parallel

B1−3 neurons are shunting inhibition neurons, set up such that their outputs are a multiplication

of the RBF neuron (Ph) outputs and sensory input (S1−3). The closed-loop controllers added

on top of the base controller are encoded in the weights (Wb1−3) of the synapses between the

B1−3 neurons and motor neurons. These weights therefore specify how much the sensory input

23



changes or modulates the base joint trajectories at a particular phase in the stepping cycle. The

motor neuron output can hereby be formulated as,

Mj = oPh ·Wb0 +

(
3∑

n=1

oPh · Sn ·Wbn

)
, (5)

where oPh is the output from RBF neuron Ph.

Controller encoding

Due to its flexibility, the CPG-RBF network can be implemented as either a centralized con-

troller or a decentralized controller. When using the CPG-RBF network as a central controller,

all legs will use the same joint trajectories. When the controller is decentralized, the individ-

ual legs or leg pairs will learn different trajectories and more complex control policies can be

learned. However, decentralization comes at the expense of additional control policy param-

eters, and thus a lower convergence rate (for more details, see (4)). In this study, we use the

CPG-RBF network as a central controller not only because of its simplicity but also to demon-

strate how fast the various controllers can be learned. In this way, we also lay the foundation

for online optimization directly on physical robots.

Learning algorithm

For learning the weights of the CPG-RBF network, we use PIBB (44); a state-of-the-art learn-

ing mechanism. The PIBB is a probability-based black-box optimization (BBO) approach,

following a direct policy search to update the policy parameters with respect to a reward func-

tion. The PIBB is a modified version of the RL-based method “policy improvement with path

integrals” (PI2) (45), using constant exploration and removing the need for temporal averag-

ing. The changes introduced in PIBB result in a more simplistic algorithm, providing a faster

convergence rate and higher accumulated reward (return) win comparison to PI2. Moreover,

PIBB is robust without the use of matrix inversions and can be applied to model-free learning

24



problems with easy-to-construct reward function requirements (46). The only open parame-

ter of PIBB is the exploration noise (44), and it has faster convergence when compared to

other gradient-based RL approaches by one order of magnitude (45). The PIBB method was

selected not only for the advantages mentioned above but also because PI2, which is compa-

rable to PIBB, has been successfully applied in similar continuous, high-dimensional action

spaces (44–46).

Supplementary Algorithm S1 shows the pseudocode of the PIBB algorithm. From this,

it can be seen that PIBB executes K roll-outs, with K Gaussian exploration noise sets (εk)

added to the control policy parameter set. The outcomes of the K roll-outs are K rewards

(Rk), representing how well the policy, with the added exploration noise sets, performed as

determined by the reward function. Finally, the policy parameters are updated by calculating

the probability for each roll-out and performing cost-weighted averaging.

For the CPG-RBF network, the control policy parameters are the plastic synapses between

the hidden RBF neurons and motor neurons (i.e., Wb0−3 in Fig. 6c). The exploration noise is

task-specific, as specified in the following sections, and the number of roll-outs (K) is set to

8 for all tasks. The exploration noise and number of roll-outs are both empirically selected

to promote fast and stable learning. Besides being task-specific, the exploration noise is also

linearly decayed during learning using a decay constant of γ = 0.995 for all tasks. Decaying

the exploration noise allows for large initial weight changes and enforces smaller changes or

fine-tuning toward the end of the learning process.

Learning the base controller

The base controller is open-looped and enables MORF to walk straight on flat ground with a

stable body posture. It lays the foundation for additional control modules to be added on top

(see Supplementary Fig. S2). Since the CPG-RBF network is used as a central controller, a

25



fixed leg phase relationship is employed whereby the contralateral legs operate in reciprocal

fashion, resulting in a tripod gait. This behavior is also often seen in animals (22). For learning

the control parameters (i.e., weight set Wb0 in Fig. 6) the following reward function is used,

Rk = wd · d− (wγ · γ + wξ · ξ + wς · ς) (6)

where wd = 3, wγ = 1, wξ = 3, and wς = 0.75. The reward function in equation (6) consists of

four sub-rewards: distance (d), instability (γ), body height error (ξ), and slippage (ς). The dis-

tance sub-reward accounts for movement along the initial heading direction, and consequently,

rewards fast straight locomotion. The instability sub-reward covers the stability of the robot

during movement. It is computed as the sum of variance in body yaw (heading direction), pitch,

and roll, as well as body height. A yaw of 0◦ means that the robot is straight, whereas a pitch

and roll equal to 0◦ means that the robot is parallel with the floor. Instability, therefore, punishes

movement that is not in the walking direction. The body height error sub-reward is a measure

of the difference between mean body height during walking and desired walking height. The

slippage sub-reward considers the extent to which each leg of the robot slips on the ground. The

slippage return is calculated as the number of times a leg tip move (i.e., has a velocity greater

than some threshold) while in ground contact. The slippage is normalized between 0 and 1

and the leg with the highest slippage is used as return. A slippage return of 1 thus implies that

one or more legs slip on the ground whenever in contact with it. Note that each sub-reward

is multiplied by a weight (wd, wγ , wξ, and wς) to make them similar in magnitude and range.

The instability sub-reward is limited at 8 to avoid negative returns becoming too large. In equa-

tion (6), the distance sub-reward can be regarded as the dominating reward. Finally, the base

controller is learned using an exploration noise (εk) of 0.02 and a roll-out execution time of six

seconds.

26



Learning the obstacle reflex controller

The obstacle reflex controller enables MORF to traverse obstacles in its way using sensory

feedback from a binary optic distance sensor placed on the robot’s head. The sensor uses a

cutoff distance of 0.115 m and is oriented 30 degree forward from a downward facing position.

The feedback is low-pass filtered by three IRR filters to retain the signal for a longer time and

only applied to the two front legs. For learning the control parameters (i.e., weight set Wb1 in

Fig. 6), the following reward function is used,

Rk = wd · d− (wγ · γ + wξ · ξ + wς · ς). (7)

where wd = 0.5, wγ = 1, wξ = 0, and wς = 0.5. The reward function is similar to equation (6)

but with the exclusion of body height error (ξ) and a lower wd and ς . The reason for excluding

the body height error is that it will penalize the robot when crawling on top of an obstacle.

Finally, the obstacle reflex controller is learned using an exploration noise (εk) of 0.02 and a

roll-out execution time of 14 seconds.

Learning the body posture controller

The body posture controller enables MORF to keep a straight body by using sensory information

from an onboard IMU. For simplicity, only sensory information from the x-axis orientation

(i.e., tilting) is used. This sensory information can be seen directly as an error to be minimized

whereby a tilt equal to zero means that the body is parallel with the ground. A negative tilt

measurement is projected to the legs on the right side and a positive to the legs on the left side.

Furthermore, the tilt error is low-pass filtered to remove unwanted sensory noise. For learning

the control parameters (i.e., weight set Wb2 in Fig. 6), the following reward function is used,

Rk = wd · d− (wγ · γ + wξ · ξ + wς · ς + wτµ · τµ + wτσ · τσ). (8)

27



where wd = 2, wγ = 1, wξ = 0, wς = 0.5, wτµ = 40, and wτσ = 10. The reward function

is similar to that expressed in equation (6) but with the exclusion of body height error (ξ) and

a lower wd and ς . In addition, the tilt mean error (τµ) and variance (τσ) are included as sub-

rewards. Finally, the body posture controller is learned using an exploration noise (εk) of 0.1

and a roll-out execution time of six seconds.

Learning the directional locomotion controller

The directional locomotion controller enables MORF to walk in a desired direction. The dif-

ference between the actual and desired walking direction provides a heading error. A negative

heading error is projected to the legs on the right side and a positive to the legs on the left side.

As in the previous cases, the heading error is low-pass filtered to remove sensory noise. In both

the simulation and in the physical robot, the actual walking direction is the robot’s z-axis orien-

tation (i.e., yaw) provided by the onboard IMU. In the simulation, the desired walking direction

is provided by waypoints that can be arbitrarily placed in the scene. On the physical robot, the

desired walking direction is provided by a joystick that, when combined with the onboard cam-

era, can be used by a human operator to steer the robot even if outside the field of vision. For

learning the control parameters (i.e., weight set Wb3 in Fig. 6), the following reward function is

used,

Rk = wd · d− (wγ · γ + wξ · ξ + wς · ς + wδ · δ). (9)

where wd = 0.1, wγ = 1, wξ = 3, wς = 1 and wδ = 6. The reward function is similar to that

expressed in equation (6) with exception of a lower wd and higher wς . In addition, the heading

error (δ) is included as a sub-reward. Finally, the directional locomotion controller is learned

using an exploration noise (εk) of 0.02 and a roll-out execution time of 10 seconds.

28



Learning the advanced controllers

The five advanced controllers are integrated into the controller using the same novel architecture

as the primitive closed-loop control modules (see Fig. 6). Instead of sensory feedback (S1−3]),

the advanced control modules received higher-level control signals that activates or disables the

respective module. In this work, a simple binary decision input from an operator is used. The

binary input signal is projected to all joint in all controller and may alternatively be provided

by either higher-level control as well. The advanced control modules are learned in a similar

way to the three primitive behaviors. All five controller are learned using an exploration noise

(εk) of 0.06 but uses different rewards functions and roll-out execution time as explained in the

following paragraphs.

The high locomotion controller is learned using a roll-out execution time of 6 seconds and

the following reward function,

Rk = wd · d− (wγ · γ + wς · ς + wλy · λy + wλz · λz). (10)

where wd = 3, wγ = 10, wξ = 0, wς = 1, wλy = −2, and wλz = −15. The reward function

is similar to that expressed in equation (6) with exception of a higher wς and removal of the

body height error (ξ). In addition, the minimum body width (λy) and height (λz) are included

as sub-rewards.

The low locomotion controller is learned using a roll-out execution time of 6 seconds and

the following reward function,

Rk = wd · d− (wγ · γ + wς · ς + wλz · λz). (11)

where wd = 3, wγ = 10, wξ = 0, wς = 1, and wλz = 60. The reward function is similar to that

expressed in equation (10) with exception of a higher wλz and removal of the minimum body

29



width (λy) measurement.

The narrow locomotion controller is learned using a roll-out execution time of 6 seconds

and the following reward function,

Rk = wd · d− (wγ · γ + wς · ς + wλy · λy). (12)

where wd = 3, wγ = 10, wξ = 0, wς = 1, and wλy = 60. The reward function is similar to that

expressed in equation (10) with exception of a higher wλy and removal of the minimum body

height (λz) measurement.

The pipe climb controller is learned using a roll-out execution time of 14 seconds and the

following reward function,

Rk = wd · d− (wγ · γ + wς · ς + wλy · λy). (13)

where wd = 5, wγ = 1, wξ = 0, and wς = 0.75. The reward function is similar to that expressed

in equation (6) with exception of a higher wd, a lower wς and removal of the body height error

(ξ).

The wall locomotion controller is learned using a roll-out execution time of 12 seconds and

the following reward function,

Rk = wd · d− (wγ · γ + wς · ς + wdz · dz). (14)

where wd = 0.6, wγ = 1, wξ = 0, wς = 0.75, and wdz = −6. The reward function is similar to

that expressed in equation (6) with exception of a lower wd and wς as well as the and removal

of the body height error (ξ). In addition, the distance traveled upwards (dz) is included as a

sub-reward.

30



Robot platform

We used the MORF robot (27), shown in Fig. 1a, to demonstrate the real-world applicability of

our method. MORF is 0.42 m long hexapod robot weighing about 4.2 kg. Each leg is about

0.25 m long when fully stretched and has three actuated degrees of freedom (DOFs), resulting

in a total of 18 DOFs. MORF is equipped with Dynamixel XM430 coreless electric motors set

to position mode using the built-in PID controllers.

In both the simulation and on the physical robot, the controller was executed at 60 Hz. A

joystick was used with the physical robot as input to the directional locomotion controller mod-

ules together with visual feedback from the RealSense Tracking Camera T265. The RealSense

Tracking Camera T265 also provide the tilting information for the body posture controller. Fi-

nally, the Sharp GP2Y0A51SK0F was used as an optic distance sensor for the obstacle reflex

controller. The physical MORF with the sensors attached can be seen in the Supplementary Fig.

S3.

Data availability

All data from running the experiments as well as the learned weight sets can be accessed at

https://github.com/MathiasThor/CPG-RBFN-framework/tree/main/data

Code availability

The source code for running the controller in simulation can be accessed at https://github.

com/MathiasThor/CPG-RBFN-framework

31

https://github.com/MathiasThor/CPG-RBFN-framework/tree/main/data
https://github.com/MathiasThor/CPG-RBFN-framework
https://github.com/MathiasThor/CPG-RBFN-framework


References

1. Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V. & Hutter, M. Learning quadrupedal

locomotion over challenging terrain. Sci. Robot. 5, eabc5986 (2020).

2. Winkler, A. W. Optimization-based motion planning for legged robots. Ph.D. thesis, ETH

Zurich, Rämistrasse 101, 8092 Zürich, Switzerland (2018).

3. Machado, J. A. T. & Silva, M. F. An overview of legged robots. In Proceedings of the

MME International Symposium on Mathematical Methods in Engineering (2006).

4. Thor, M., Kulvicius, T. & Manoonpong, P. Generic neural locomotion control framework

for legged robots. IEEE Trans. Neural Netw. Learn. Syst. 1–13 (2020).

5. Cully, A., Clune, J., Tarapore, D. & Mouret, J.-B. Robots that can adapt like animals.

Nature 521, 503–507 (2015).

6. Silva, M. F. & Machado, J. A. T. A literature review on the optimization of legged robots.

J. Vib. Control 18, 1753–1767 (2012).

7. Ansari, A. R., Whitman, J., Saund, B. & Choset, H. Modular platforms for advanced

inspection, locomotion, and manipulation. In Proceedings of the Waste Management Sym-

posia (2017).

8. Klamt, T. et al. Remote mobile manipulation with the centauro robot: Full-body telepres-

ence and autonomous operator assistance. J. Field Robot. 37, 889–919 (2020).

9. Boston Dynamics – Spot Applications. available at https://www.

bostondynamics.com/spot/applications. Accessed: 2020-10-14.

32

https://www.bostondynamics.com/spot/applications
https://www.bostondynamics.com/spot/applications


10. ANYbotics – Robotic Package Delivery With ANYmal. available at https://www.

anybotics.com/robotic-package-delivery-with-anymal/. Accessed

2020-10-14.

11. Hwangbo, J. et al. Learning agile and dynamic motor skills for legged robots. Sci. Robot.

4, eaau5872 (2019).

12. Mombaur, K. et al. Chapter 4 - control of motion and compliance. In Sharbafi, M. A. &

Seyfarth, A. (eds.) Bioinspired Legged Locomotion, 135 – 346 (Butterworth-Heinemann,

2017).

13. Wensing, P. M. & Orin, D. E. 3D-SLIP steering for high-speed humanoid turns. In Proceed-

ings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 4008–4013

(2014).

14. Poulakakis, I. & Grizzle, J. W. The spring loaded inverted pendulum as the hybrid zero

dynamics of an asymmetric hopper. IEEE Trans. Automat. Contr. 54, 1779–1793 (2009).

15. Pratt, J., Carff, J., Drakunov, S. & Goswami, A. Capture point: A step toward humanoid

push recovery. In Proceedings of the 6th IEEE-RAS International Conference on Humanoid

Robots, 200–207 (2006).

16. Clune, J., Stanley, K. O., Pennock, R. T. & Ofria, C. On the performance of indirect

encoding across the continuum of regularity. IEEE Trans. Evol. Comput. 15, 346–367

(2011).

17. Schilling, M., Konen, K., Ohl, F. W. & Korthals, T. Decentralized deep reinforcement

learning for a distributed and adaptive locomotion controller of a hexapod robot. CoRR

abs/2005.11164 (2020).

33

https://www.anybotics.com/robotic-package-delivery-with-anymal/
https://www.anybotics.com/robotic-package-delivery-with-anymal/


18. Yang, C., Yuan, K., Zhu, Q., Yu, W. & Li, Z. Multi-expert learning of adaptive legged

locomotion. Sci. Robot. 5, eabb2174 (2020).

19. Schilling, M., Konen, K. & Korthals, T. Modular deep reinforcement learning for emergent

locomotion on a six-legged robot. In Proceedings of the 8th IEEE RAS/EMBS International

Conference for Biomedical Robotics and Biomechatronics (BioRob), 946–953 (2020).

20. Oliveira, M., Costa, L., Rocha, A., Santos, C. & Ferreira, M. Multiobjective optimization

of a quadruped robot locomotion using a genetic algorithm. In Proceedings of the 17th

Online World Conference on Soft Computing in Industrial Applications, 427–436 (2011).

21. Kullander, K. et al. Role of epha4 and ephrinb3 in local neuronal circuits that control

walking. Science 299, 1889–1892 (2003). URL https://science.sciencemag.

org/content/299/5614/1889. https://science.sciencemag.org/

content/299/5614/1889.full.pdf.

22. Biewener, A. A. Animal Locomotion (Oxford Univercity Press, 2003), 1 edn.

23. Büschges, A. Sensory control and organization of neural networks mediating coordination

of multisegmental organs for locomotion. J. Neurophysiol. 93, 1127–1135 (2005).

24. Azayev, T. & Zimmerman, K. Blind hexapod locomotion in complex terrain with gait

adaptation using deep reinforcement learning and classification. J. Intell. Robot. Syst. 99,

659–671 (2020).

25. Delcomyn, F. Walking robots and the central and peripheral control of locomotion in in-

sects. Auton. Robot. 7, 259–270 (1999).

26. Samek, W. & Müller, K.-R. Towards Explainable Artificial Intelligence, 5–22 (Springer

International Publishing, Cham, 2019).

34

https://science.sciencemag.org/content/299/5614/1889
https://science.sciencemag.org/content/299/5614/1889
https://science.sciencemag.org/content/299/5614/1889.full.pdf
https://science.sciencemag.org/content/299/5614/1889.full.pdf


27. Thor, M., Larsen, J. C. & Manoonpong, P. MORF - modular robot framework. In Proceed-

ings of the 2nd International Youth Conference of Bionic Engineering (IYCBE2018), 21–23

(2018).

28. Hashlamon, I. & Erbatur, K. Joint sensor fault detection and recovery based on virtual

sensor for walking legged robots. In Proceedings of IEEE 23rd International Symposium

on Industrial Electronics (ISIE), 1210–1214 (2014).

29. Ramesh Perla, Mukhopadhyay, S. & Samanta, A. N. Sensor fault detection and isolation

using artificial neural networks. In Proceedings of IEEE Region 10 Conference TENCON,

vol. 4, 676–679 (2004).

30. Christensen, A. L., O’Grady, R., Birattari, M. & Dorigo, M. Fault detection in autonomous

robots based on fault injection and learning. Auton. Robot. 24, 49–67 (2008).

31. Patle, B., Babu L, G., Pandey, A., Parhi, D. & Jagadeesh, A. A review: On path planning

strategies for navigation of mobile robot. Def. Technol. 15, 582 – 606 (2019).

32. Goldschmidt, D., Manoonpong, P. & Dasgupta, S. A neurocomputational model of goal-

directed navigation in insect-inspired artificial agents. Front. Neurorobot. 11, 20 (2017).

33. Brooks, R. A robust layered control system for a mobile robot. IEEE Robot. Autom. Lett.

2, 14–23 (1986).

34. Jakobi, N. Evolutionary robotics and the radical envelope-of-noise hypothesis. Adapt.

Behav. 6, 325–368 (1997).

35. Aoi, S., Manoonpong, P., Ambe, Y., Matsuno, F. & Wörgötter, F. Adaptive control strate-

gies for interlimb coordination in legged robots: A review. Front. Neurorobot. 11, 39

(2017).

35



36. Nachstedt, T., Tetzlaff, C. & Manoonpong, P. Fast dynamical coupling enhances frequency

adaptation of oscillators for robotic locomotion control. Front. Neurorobot. 11, 14 (2017).

37. Pasemann, F., Hild, M. & Zahedi, K. SO(2)-Networks as Neural Oscillators. In Proceedings

of the Computational Methods in Neural Modeling, 144–151 (Springer Berlin Heidelberg,

Berlin, Heidelberg, 2003).

38. Pasemann, F. & Stollenwerk, N. Attractor switching by neural control of chaotic neurody-

namics. Netw. Comput. Neural Syst. 9, 549–561 (1998).

39. Pasemann, F. Complex dynamics and the structure of small neural networks. Netw. Comput.

Neural Syst. 13, 195–216 (2002).

40. Steingrube, S., Timme, M., Wörgötter, F. & Manoonpong, P. Self-organized adaptation of

a simple neural circuit enables complex robot behaviour. Nat. Phys. 6, 224–230 (2010).

41. Thor, M. & Manoonpong, P. Error-based learning mechanism for fast online adaptation in

robot motor control. IEEE Trans. Neural Netw. Learn. Syst. 31, 2042–2051 (2019).

42. Manoonpong, P., Parlitz, U. & Wörgötter, F. Neural control and adaptive neural forward

models for insect-like, energy-efficient, and adaptable locomotion of walking machines.

Front. Neural Circuits 7, 12 (2013).

43. Broomhead, D. & Lowe, D. Radial basis functions, multi-variable functional interpolation

and adaptive networks. Royal Signals and Radar Establishment 4148, 801–849 (1988).

44. Stulp, F. & Sigaud, O. Policy Improvement: Between Black-Box Optimization and

Episodic Reinforcement Learning. In Proceedings of Journées Francophones Planifica-

tion, Décision, et Apprentissage pour la conduite de systèmes (2013).

36



45. Theodorou, E., Buchli, J. & Schaal, S. A generalized path integral control approach to

reinforcement learning. J. Mach. Learn. Res. 11, 3137–3181 (2010).

46. Chatterjee, S. et al. Learning and chaining of motor primitives for goal-directed locomotion

of a snake-like robot with screw-drive units. Int. J. Adv. Robot. Syst. 12, 176 (2015).

Acknowledgments

The authors would like to thank the members of the SDU Biorobotics group for their technical

support and helpful discussions. The authors would also like to thank Anders Lyhne Christensen

for fruitful discussions and detailed feedback

Funding:

This work was supported in part by the Horizon 2020 Framework Programme (FETPROACT-

01-2016 FET Proactive: Emerging Themes and Communities) under Grant 732266 (Plan4Act)

(P.M., Project WP-PI) and in part by a startup grant on Bio-inspired Robotics from the Vidyasir-

imedhi Institute of Science and Technology (VISTEC) (P.M., Project PI).

Author contributions

M.T. contributed to the modular neural control structure, implementation, experiments, data

analysis, and the manuscript. P.M. contributed to the embodied neural control structure, data

analysis, and the manuscript.

Competing Interests

The authors declare that they have no competing interests.

37



Supplementary materials

This PDF includes:

• Section S1. Simulation implementation

• Section S2. Controller generalization and limitations

• Section S3. Disabling control modules

• Figure S1. Body posture limitations

• Figure S2. Learning process.

• Figure S3. The physical version of MORF.

• Algorithm S1. PIBB Pseudocode

Other Supplementary Material for this manuscript includes:

• Video S1 Learning the base controller (https://youtu.be/wBMH6HuDTms)

• Video S2 Learning the obstacle reflex controller (https://youtu.be/VFxM8FNHwlk)

• Video S3 Learning the body posture controller (https://youtu.be/LpWXVrbPj38)

• Video S4 Learning the directional locomotion controller (https://youtu.be/-8k73wVa89E)

• Video S5 Deploying primitive controllers in simulation (https://youtu.be/MRSWHOnPZnQ)

• Video S6 Deploying primitive controllers on a physical robot (https://youtu.be/w1T2uxM_

4KE)

• Video S7 Deploying primitive and advanced controllers in simulation (https://youtu.

be/uzQN6vsHuww)

• Video S8 Controller generalization and limitations (https://youtu.be/7aX7aqxLOs0)

• Video S9 Disabling primitive control modules (https://youtu.be/NkntPiiMoRU)

• Video S10 Disabling advanced control modules (https://youtu.be/X9e08AHq7kM)

38

https://youtu.be/wBMH6HuDTms
https://youtu.be/VFxM8FNHwlk
https://youtu.be/LpWXVrbPj38
https://youtu.be/-8k73wVa89E
https://youtu.be/MRSWHOnPZnQ
https://youtu.be/w1T2uxM_4KE
https://youtu.be/w1T2uxM_4KE
https://youtu.be/uzQN6vsHuww
https://youtu.be/uzQN6vsHuww
https://youtu.be/7aX7aqxLOs0
https://youtu.be/NkntPiiMoRU
https://youtu.be/X9e08AHq7kM


S1. Simulation details

For the simulated experiments we use the robot simulation framework CoppeliaSim from Cop-

pelia Robotics with the Vortex physics engine from CM Labs. CoppeliaSim offers real-world

parameters (i.e., corresponding to physical units) for many physical properties, making it both

realistic and precise. However, to make the learned controller more robust, Gaussian noise

is added to the center of mass for MORF. Since MORF is mostly rigid, we saw no need to

introduce additional simulation noise.

S2. Controller generalization and limitations

In the following, we investigate the generalization and limitations of the learned control mod-

ules. All of the generalizations and limitations are furthermore shown visually in Supplementary

Video S8.

Obstacle reflex control

Using the obstacle reflex controller, MORF is able to climb up obstacles. The obstacle reflex

controller presented in this work is learned on obstacles with a height of 0.04m, but it can

generalize to obstacles with a max height of 0.07m (i.e., a 75% increase). The obstacle reflex

controller can be combined with the directional locomotion controller to address the issue of

keeping a straight line when the obstacle height is big and the behavior may affect the walk-

ing direction of the robot. As we will later explain, the body posture controller furthermore

generalizes to the high and low locomotion behaviors.

Body posture control

Using the body posture controller, MORF is able to minimize tilt movement while walking.

The body posture controller presented in this work can generalize to various differences in

39



walking heights although learned with a fixed height difference of 0.04m. Fig. S1 shows how

the relationship between the difference in walking height and the amount of tilting when MORF

is walking for 5 seconds with its right legs on the levitated plate. From this, it can be seen

that the body posture controller can keep the body tilting low when compared to not using

the controller. At around a height difference of 0.08m, the tilting begins to increase rapidly,

and MORF struggles to move straight forwards. A difference in walking height of 0.08m may

therefore be considered the controller’s limitation. The body posture controller can be combined

with the directional locomotion controller to address the issue of keeping a straight line when

the difference in walking height is big. Moreover, as we will later explain, the body posture

controller also generalizes to high locomotion as well as wall and pipe climbing behaviors were

it plays an important role when varying the friction.

Fig. S1. Body posture limitations. The average tilting of MORF when walking for 5 seconds with the
right side legs on a plate of different heights (i.e., height differences). The plot shows both the average
tilt with and without the body posture controller.

40



Directional locomotion control

Using the directional locomotion controller, MORF is able to locomote in various directions.

The directional locomotion controller presented in this work can generalize to all walking di-

rections, although learned with a fixed desired walking direction of 45 degrees to the right. As

we will later explain, the directional locomotion controller furthermore generalizes to high, low,

and narrow locomotion.

High locomotion control

Using the high locomotion controller, MORF is able to lift its body to clear obstacles in its way.

The maximum height and width of the obstacles which can be cleared by MORF when using

high locomotion control is 0.08m and 0.29m, respectively. This is an increase of 128.6% in

height when compared to the base control. The maximum dimensions of the obstacle that can

be cleared with high locomotion control correspond to the minimum distance from the bottom

of the robot to the walking ground and the minimum distance between bilateral legs.

The high locomotion controller can be combined with the body posture controller for re-

ducing tilt movement. E.g., when MORF is walking for five seconds with a walking height

difference of 0.04m, the tilting is reduced by 64% on average. The high locomotion controller

can also be combined with the directional locomotion controller for steering. Experiments

showed that it, as with the base controller, can steer in any direction but at a reduced turning

speed. Finally, the height walk controller can also be combined with the obstacle reflex con-

troller. In fact, the increased lifting height of the legs during the swing phase when using the

high locomotion controller enables MORF to traverse obstacles up to 0.07m in height before

requiring the obstacle reflex controller. This creates redundancy that can be exploited in case

of sensory failure. With the obstacle reflex controller, the high locomotion controller enables

MORF to traverse obstacles up to 0.095m in height. This corresponds to 70.4% of MORF’s

41



body height, and it is 35.7% taller than the base controller with obstacle reflex control.

Low locomotion control

Using the low locomotion controller, MORF is able to squeeze below obstacles in its way. The

minimum height below the obstacle which MORF can fit under using this controller is 0.146m,

which is only 8.9% taller than MORF’s body height.

The low locomotion controller makes MORF lay on its stomach with no legs in ground

contact in parts of the step cycle to minimize the height. This prevents the controller from being

used in parallel with the body posture controller since when no leg is in ground contact, the body

cannot be stabilized. Like the high locomotion controller, the low locomotion controller can also

be combined with the directional locomotion controller for steering during low locomotion.

It could likewise steer in any direction with a reduced turning speed. The low locomotion

controller can, however, not be combined with the obstacle reflex controller. This is because the

reduced height of MORF results in the optic distance sensory placed on MORF’s head detecting

the walking ground. The obstacle reflex is hereby constantly triggered even when no obstacle

is in front of MORF. A solution is to reduce the cutoff distance from 0.115m to 0.07m when

using the low locomotion controller. When doing so, MORF is able to traverse obstacles up to

0.03m in height.

Narrow locomotion control

Using the narrow locomotion controller, MORF is able to squeeze between obstacles. The

minimum width between obstacle is 0.4m which correspond to the maximum width of MORF

when the narrow locomotion controller. Compared to using only the base controller, this is

17.5% narrower.

The narrow locomotion controller can be combined with the directional locomotion con-

troller for steering. It can steer in any direction with a similar turning speed to when using

42



the base controller. However, the narrow configuration of the legs prevents the controller from

being used in parallel with the body posture and obstacles reflex controller.

Pipe climb control

Using the pipe climb controller, MORF is able to locomote on a pipe. The controller was

learned on a pipe with a diameter of 0.7m, but the controller generalizes to any pipe diameters

above 0.6m. Furthermore, it can deal with a 5% reduction in pipe friction on a 0.7m diameter

pipe (with an initial friction coefficient of 1.0).

When the pipe climb controller is combined with the body posture controller, the pipe fric-

tion can be decreased by up to 99% (i.e., a friction coefficient of 0.01). The pipe climb controller

can not make use of either the directional locomotion or obstacle reflex controller. Although

their combinations show strong indications of being able to steer on pipes that bend and climb

from one pipe diameter to another, the instability involved in these actions causes the robot

to fall off the pipe. A solution would be to use more complex foot designs that incorporate

electromagnets or suctions cups, thereby ensuring the robots stay on the pipe.

Wall climb control

Using the wall climb controller, MORF is able to climb forwards between to walls without

being in ground contact. The controller was learned on walls that are placed 0.41m apart. With

this width, MORF can clear a 1.2m gap on average by climbing on the walls. The controller can

generalize to walls that are placed up to 0.435m apart. When the wall are further apart MORF

is able to climb further upwards. In future work is would be interesting to exploit this and lean

a decent and ascent controller to add on top of the wall climb controller. When the friction is

reduced by 20% (from an initial friction coefficient of 1.0) on both walls, the clearing distance is

reduced to 0.82m average. Reducing only the friction on one wall results in a clearing distance

of 0.5m.

43



When the wall climb controller is combined with the body posture controller, the clearing

distance is the same when using the initial friction on the walls when compared to not using

the body posture controller. However, it is 77.9% longer when reducing the friction on both

walls by 20% and 42% longer when only reducing the friction on one wall. When the friction

is reduced by 20% on one wall, the activity of the body posture controller increases by 20.6%

compared to using the initial friction on both walls. Like in the case of the pipe climb controller,

neither the directional locomotion nor obstacle reflex controller could be used together with this

wall climb controller.

General observations

The above investigation shows that the primitive closed-loop modules generalize to other be-

haviors besides the one produced by the base controller. In many cases, this results in emergent

behaviors with better performance than using a single control module with the base controller.

In some cases, two control modules could not work in parallel. This was either because the

leg configuration of the advanced behavior is too different from that of the base behavior (e.g.,

the narrow locomotion behavior) or because the advanced behavior is sensitive regarding sta-

bility (e.g., the pipe climbing behavior). There are two possible solutions to this. The first is to

learn dedicated primitive closed-loop modules for the specific advanced behaviors. The second

is to allow the modules to inhibit each other in a hierarchical manner. More important behaviors

can, in this way, turn off less important behaviors that interfere negatively (e.g., narrow locomo-

tion inhibits the directional locomotion control module). In the results presented in this work,

we employ the inhibition technique where an advanced controller will inhibit non-compliant

primitive controllers.

44



S3. Disabling control modules

To investigate how the robot performs without specific modules, we disabled each of the control

modules in the combined controller experiments. Supplementary Video S9 shows the results

from disabling the modules of the controller that uses the three primitive closed-loop controllers

(obstacle reflex, body posture, and directional locomotion controller). Movie S9 and S10 shows

the results from disabling the modules of the controller that uses the three primitive closed-loop

controllers as well as the one that uses both the primitive and advanced controllers. Both videos

show that all the learned control modules are needed in order to locomote from the initial to the

end position.

45



Fig. S2. Learning process. First the base controller is learned without any feedback. Then the primitive
controllers are learned using sensory feedback and added in parallel with the base controller. Finally, the
advanced controller are learned using high-level control signals and added in parallel with the base and
primitive controllers.

46



Fig. S3. The physical version of MORF. MORF is equipped with a RealSense Tracking Camera T265
and a Sharp GP2Y0A51SK0F optic distance sensor. The learned closed-loop control modules require
sensory information from these sensors to function.

47



Algorithm S1 PIBB Pseudocode
while reward not converged do

// Execute K roll-outs
for each k ∈ K do

// Sample noise (εk)
εk = N (0, σ2

PIBB)
// Execute policy with noise and record final reward (R)
Rk = execCPGRBFN(wp+ εk)

end for
// Calculate probability (Pk) for each roll-out
for each k ∈ K do

Sk = e
λ· Rk−mink(Rk)

maxk(Rk)−mink(Rk)

end for
for each k ∈ K do

Pk =
Sk∑K
k=1 Sk

end for
// Perform reward-weighted averaging
δwp =∑K

k=1(Pk·εk)

// Update policy parameters
wp← wp+ δwp
// Decay exploration noise using γ
σ2
PIBB = γ · σ2

PIBB

end while

48


